Results finsihed
This commit is contained in:
Binary file not shown.
Binary file not shown.
@@ -88,7 +88,7 @@ In the Principia, Newton asserted that every mass exerts an attractive force on
|
||||
This law states that the magnitude of the gravitational force between two masses is
|
||||
|
||||
\begin{equation}
|
||||
F = G \frac{m_1 m_2}{r^2}
|
||||
F_g = G \frac{m_1 m_2}{r^2}
|
||||
\label{eq:NLUG}
|
||||
\end{equation}
|
||||
|
||||
@@ -449,7 +449,7 @@ Looking at Table \ref{tab:grav_equal}, this derived relationship can be verified
|
||||
|
||||
|
||||
|
||||
\begin{figure}[h!] % h! = “here” placement
|
||||
\begin{figure}[H] % h! = “here” placement
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{Force vs Mass m1 m2} % <-- your image file name
|
||||
\caption{$F_g$ vs mass of $m_1$ = $m_2$}
|
||||
@@ -458,8 +458,90 @@ Looking at Table \ref{tab:grav_equal}, this derived relationship can be verified
|
||||
|
||||
|
||||
As suggested by equation \ref{eq:m1and2}, there is a proportional quadratic relationship between the masses of the objects and the resulting gravitational force (see Figure \ref{fig:m1m2graph}).
|
||||
Therefore, equation \ref{eq:m1and2} is validated by the simulation.
|
||||
Therefore, equation \ref{eq:m1and2} is validated by the simulation.\\\\
|
||||
|
||||
Moving onto Tables \ref{tab:grav_dist1} and \ref{tab:grav_dist2}, the output columns for the gravitational force appear identical.
|
||||
Upon further inspection, the gravitational force seems to exhibit a dependency on the distance between the masses.
|
||||
A processed data table can be made combining Tables \ref{tab:grav_dist1} and \ref{tab:grav_dist2},
|
||||
showcasing the relationship between $F_g$ and $r:= |x_1-x_2|$.
|
||||
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\caption{Gravitational force versus distance between two masses.}
|
||||
\label{tab:grav_vs_r}
|
||||
\renewcommand{\arraystretch}{1.3}
|
||||
|
||||
\begin{tabularx}{0.8\textwidth}{
|
||||
@{}
|
||||
>{\centering\arraybackslash}X
|
||||
>{\centering\arraybackslash}X
|
||||
@{}
|
||||
}
|
||||
\toprule
|
||||
\textbf{Distance $r$ (m)} & \textbf{Gravitational Force $F_g$ (N)} \\
|
||||
\midrule
|
||||
2.00 & $1.67\times10^{-7}$ \\
|
||||
4.00 & $4.17\times10^{-8}$ \\
|
||||
6.00 & $1.85\times10^{-8}$ \\
|
||||
8.00 & $1.04\times10^{-8}$ \\
|
||||
10.00 & $6.67\times10^{-9}$ \\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
\end{table}
|
||||
|
||||
This new relationship is graphed in the figure below:
|
||||
|
||||
|
||||
\begin{figure}[H] % h! = “here” placement
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{Force vs Distance Between Masses} % <-- your image file name
|
||||
\caption{$F_g$ vs $r= x_2 - x_1$}
|
||||
\label{fig:rgraph}
|
||||
\end{figure}
|
||||
|
||||
The shown trendline suggests a proprtional fit to $\frac{1}{r^2}$ as follows:
|
||||
|
||||
\[
|
||||
F_g \propto \frac{1}{r^2},
|
||||
\]
|
||||
|
||||
so
|
||||
|
||||
\begin{equation}
|
||||
F_g = k_4 \times \frac{1}{r^2}.
|
||||
\label{eq:finalEq}
|
||||
\end{equation}
|
||||
|
||||
When combined with equation \ref{eq:m1and2}, NLUG pops out, and the proprtionality constant can be denotes as $G$:
|
||||
|
||||
|
||||
\begin{equation}
|
||||
F_g = G \frac{m_1 m_2}{r^2} \tag{\ref{eq:NLUG}}
|
||||
\end{equation}
|
||||
|
||||
The final step is to solve for the proportionality constant, $G$. As the relationship has been proven, any data point can be used to solve for this constant.
|
||||
For simplicity, the control data point (used for setup) will be used, where $m_1$ = 100 kg, $m_2$ = 100 kg, $r = x_2 - x_1 = 6\,\text{m} - 2\,\text{m} = 4\,\text{m}$.
|
||||
We have
|
||||
\[
|
||||
F_g = G \left( \frac{m_1 m_2}{r^2} \right)
|
||||
= G \left( \frac{100\,\text{kg} \times 100\,\text{kg}}{4^2\,\text{m}^2} \right)
|
||||
= 4.17 \times 10^{-8}\,\text{N}
|
||||
\]
|
||||
|
||||
\[
|
||||
G = \frac{F_g \, r^2}{m_1 m_2}
|
||||
= \frac{(4.17 \times 10^{-8}\,\text{N}) (4\,\text{m})^2}{100\,\text{kg} \times 100\,\text{kg}}
|
||||
= 6.67 \times 10^{-11}\,\text{N\,m}^2\text{/kg}^2
|
||||
\].
|
||||
|
||||
Ergo, the data from the simulation can be used to derive NLUG and solve for $G$, the universal gravitational constant:
|
||||
|
||||
|
||||
\begin{equation}
|
||||
F_g = G \frac{m_1 m_2}{r^2}, \quad
|
||||
G = 6.67 \times 10^{-11}\,\text{N\,m}^2\text{/kg}^2
|
||||
\label{eq:solvedNLUG}
|
||||
\end{equation}
|
||||
|
||||
\section*{Error Analysis}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user