32 Commits

Author SHA1 Message Date
4050a354f7 Update TelopV3 and Targeting for merge conflicts. 2026-01-23 20:19:21 -06:00
f20e640c62 Merge remote-tracking branch 'origin/master' into Targeting
# Conflicts:
#	TeamCode/src/main/java/org/firstinspires/ftc/teamcode/teleop/TeleopV3.java
#	TeamCode/src/main/java/org/firstinspires/ftc/teamcode/tests/TurretTest.java
#	TeamCode/src/main/java/org/firstinspires/ftc/teamcode/utils/Turret.java
2026-01-22 22:13:07 -06:00
c2e9d8fa87 Merge remote-tracking branch 'origin/Targeting' into Targeting 2026-01-22 22:00:41 -06:00
46a5366a4a Add Auto ball detect on startup to spindexer to detect how many balls are already in spindexer on power on. 2026-01-22 21:59:58 -06:00
fbdeb6e291 Turret works y8ippee horray hurrah ig 2026-01-22 21:04:25 -06:00
abhiram vishnubhotla
298b7bca8c Merge pull request #13 from Technical-Turbulence-FTC/feature/interpolation
Feature/interpolation
2026-01-22 20:21:05 -06:00
2f0fcad128 updated interpolation in teleop 2026-01-22 20:06:08 -06:00
45199b952b added interpolation 2026-01-22 20:03:00 -06:00
76ceb91fb7 Merge branch 'Targeting' of https://github.com/Technical-Turbulence-FTC/DecodeFTCMain into turret-refactor-updates 2026-01-22 19:28:42 -06:00
daccec4fdd Add Targeting Class with initial values that still need tuning. Connect Targeting Class to TeleOpV3. Clean up unused code in Flywheel class. 2026-01-22 00:00:17 -06:00
b55d44ae97 Merge branch 'Targeting' of https://github.com/Technical-Turbulence-FTC/DecodeFTCMain into turret-refactor-updates 2026-01-21 20:01:22 -06:00
50212015e3 trackGoal expected robot centric view, but was fed a field centric view. simple trig to use a deltaPos instead of just pos 2026-01-21 19:04:30 -06:00
c271c88e45 Merge branch 'master' of https://github.com/Technical-Turbulence-FTC/DecodeFTCMain into test/continuous_ll_track 2026-01-21 18:36:06 -06:00
33300876ef Merge remote-tracking branch 'origin/master' into Targeting 2026-01-21 09:28:59 -06:00
e1745500cc Create new targeting class. Fix Flywheel Error with motor2 velocity and include spindexer pos updates. 2026-01-21 09:28:21 -06:00
0dbf155608 stash 2026-01-20 21:18:42 -06:00
313eeeaa95 Merge remote-tracking branch 'origin/SpindexerPosUpdate' 2026-01-20 20:59:56 -06:00
b28647373a no errors 2026-01-20 20:57:14 -06:00
7e7254aaea turret refaftoring 2026-01-20 20:52:23 -06:00
e7dfa11196 New Spindexer Positions after repair. 2026-01-20 20:38:40 -06:00
a3068cea2e Merge branch 'SpindexerRefactor' of https://github.com/Technical-Turbulence-FTC/DecodeFTCMain into test/continuous_ll_track 2026-01-20 19:17:16 -06:00
51bf55cc49 Merge remote-tracking branch 'origin/SpindexerRefactor' into SpindexerRefactor 2026-01-19 23:40:52 -06:00
6f3a178a08 Comment out color sensor reads for now to speed up loop times. 2026-01-19 23:40:17 -06:00
ccb52f625d error check 2026-01-19 20:42:22 -06:00
8f92dc8f31 test 2026-01-19 20:28:13 -06:00
40d51ce757 Working Spindexer prototype with original shoot all functionality. 2026-01-19 19:39:01 -06:00
cfd09df8a0 Working Spindexer prototype with original shoot all functionality. 2026-01-19 11:11:22 -06:00
f1d4bb9d24 continous ll tracking, TEST 2026-01-19 10:38:34 -06:00
59796154bd Switched to built in FTC PIDF Controls. 2026-01-18 11:19:54 -06:00
d42af20447 woag 2026-01-17 14:26:15 -06:00
1c292e77c7 Working red auto apparently...blue is theoretial atp 2026-01-17 13:50:58 -06:00
fde0880225 Working red auto apparently...blue is theoretial atp 2026-01-17 09:44:06 -06:00
17 changed files with 1248 additions and 321 deletions

View File

@@ -1,43 +1,48 @@
package org.firstinspires.ftc.teamcode.autonomous;
import static org.firstinspires.ftc.teamcode.constants.Color.redAlliance;
import static org.firstinspires.ftc.teamcode.constants.Poses.*;
import static org.firstinspires.ftc.teamcode.constants.Poses.bh1;
import static org.firstinspires.ftc.teamcode.constants.Poses.bh2a;
import static org.firstinspires.ftc.teamcode.constants.Poses.bh2b;
import static org.firstinspires.ftc.teamcode.constants.Poses.bh2c;
import static org.firstinspires.ftc.teamcode.constants.Poses.bh3a;
import static org.firstinspires.ftc.teamcode.constants.Poses.bh3b;
import static org.firstinspires.ftc.teamcode.constants.Poses.bh4a;
import static org.firstinspires.ftc.teamcode.constants.Poses.bh4b;
import static org.firstinspires.ftc.teamcode.constants.Poses.bx1;
import static org.firstinspires.ftc.teamcode.constants.Poses.bx2a;
import static org.firstinspires.ftc.teamcode.constants.Poses.bx2b;
import static org.firstinspires.ftc.teamcode.constants.Poses.bx2c;
import static org.firstinspires.ftc.teamcode.constants.Poses.bx3a;
import static org.firstinspires.ftc.teamcode.constants.Poses.bx3b;
import static org.firstinspires.ftc.teamcode.constants.Poses.bx4a;
import static org.firstinspires.ftc.teamcode.constants.Poses.bx4b;
import static org.firstinspires.ftc.teamcode.constants.Poses.by1;
import static org.firstinspires.ftc.teamcode.constants.Poses.by2a;
import static org.firstinspires.ftc.teamcode.constants.Poses.by2b;
import static org.firstinspires.ftc.teamcode.constants.Poses.by2c;
import static org.firstinspires.ftc.teamcode.constants.Poses.by3a;
import static org.firstinspires.ftc.teamcode.constants.Poses.by3b;
import static org.firstinspires.ftc.teamcode.constants.Poses.by4a;
import static org.firstinspires.ftc.teamcode.constants.Poses.by4b;
import static org.firstinspires.ftc.teamcode.constants.Poses.rh1;
import static org.firstinspires.ftc.teamcode.constants.Poses.rh2a;
import static org.firstinspires.ftc.teamcode.constants.Poses.rh2b;
import static org.firstinspires.ftc.teamcode.constants.Poses.rh2c;
import static org.firstinspires.ftc.teamcode.constants.Poses.rh3a;
import static org.firstinspires.ftc.teamcode.constants.Poses.rh3b;
import static org.firstinspires.ftc.teamcode.constants.Poses.rh4a;
import static org.firstinspires.ftc.teamcode.constants.Poses.rh4b;
import static org.firstinspires.ftc.teamcode.constants.Poses.rx1;
import static org.firstinspires.ftc.teamcode.constants.Poses.rx2a;
import static org.firstinspires.ftc.teamcode.constants.Poses.rx2b;
import static org.firstinspires.ftc.teamcode.constants.Poses.rx2c;
import static org.firstinspires.ftc.teamcode.constants.Poses.rx3a;
import static org.firstinspires.ftc.teamcode.constants.Poses.rx3b;
import static org.firstinspires.ftc.teamcode.constants.Poses.rx4a;
import static org.firstinspires.ftc.teamcode.constants.Poses.rx4b;
import static org.firstinspires.ftc.teamcode.constants.Poses.ry1;
import static org.firstinspires.ftc.teamcode.constants.Poses.ry2a;
import static org.firstinspires.ftc.teamcode.constants.Poses.ry2b;
import static org.firstinspires.ftc.teamcode.constants.Poses.ry2c;
import static org.firstinspires.ftc.teamcode.constants.Poses.ry3a;
import static org.firstinspires.ftc.teamcode.constants.Poses.ry3b;
import static org.firstinspires.ftc.teamcode.constants.Poses.ry4a;
import static org.firstinspires.ftc.teamcode.constants.Poses.ry4b;
import static org.firstinspires.ftc.teamcode.constants.Poses.teleStart;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.hoodAuto;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.spindexer_outtakeBall1;
@@ -48,6 +53,7 @@ import static org.firstinspires.ftc.teamcode.constants.ServoPositions.transferSe
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.turret_blueClose;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.turret_redClose;
import static org.firstinspires.ftc.teamcode.constants.ShooterVars.AUTO_CLOSE_VEL;
import static org.firstinspires.ftc.teamcode.teleop.TeleopV3.spinPow;
import androidx.annotation.NonNull;
@@ -60,6 +66,7 @@ import com.acmerobotics.roadrunner.ParallelAction;
import com.acmerobotics.roadrunner.Pose2d;
import com.acmerobotics.roadrunner.SequentialAction;
import com.acmerobotics.roadrunner.TrajectoryActionBuilder;
import com.acmerobotics.roadrunner.TranslationalVelConstraint;
import com.acmerobotics.roadrunner.Vector2d;
import com.acmerobotics.roadrunner.ftc.Actions;
import com.qualcomm.hardware.limelightvision.LLResult;
@@ -69,7 +76,7 @@ import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
import org.firstinspires.ftc.teamcode.libs.RR.MecanumDrive;
import org.firstinspires.ftc.teamcode.utils.FlywheelV2;
import org.firstinspires.ftc.teamcode.utils.Flywheel;
import org.firstinspires.ftc.teamcode.utils.Robot;
import org.firstinspires.ftc.teamcode.utils.Servos;
@@ -82,15 +89,17 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
public static double intake2Time = 3.0;
public static double colorDetect = 3.0;
public static double holdTurrPow = 0.01; // power to hold turret in place
public static double slowSpeed = 30.0;
Robot robot;
MultipleTelemetry TELE;
MecanumDrive drive;
FlywheelV2 flywheel;
Flywheel flywheel;
Servos servo;
double velo = 0.0;
boolean gpp = false;
boolean pgp = false;
boolean ppg = false;
public static double spinUnjamTime = 0.6;
double powPID = 0.0;
double bearing = 0.0;
int b1 = 0; // 0 = no ball, 1 = green, 2 = purple
@@ -100,10 +109,8 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
public Action initShooter(int vel) {
return new Action() {
public boolean run(@NonNull TelemetryPacket telemetryPacket) {
powPID = flywheel.manageFlywheel(vel, robot.shooter1.getCurrentPosition(), robot.shooter2.getCurrentPosition());
velo = flywheel.getVelo(robot.shooter1.getCurrentPosition(), robot.shooter2.getCurrentPosition());
robot.shooter1.setPower(powPID);
robot.shooter2.setPower(powPID);
flywheel.manageFlywheel(vel);
velo = flywheel.getVelo();
TELE.addData("Velocity", velo);
TELE.update();
@@ -171,10 +178,8 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
@Override
public boolean run(@NonNull TelemetryPacket telemetryPacket) {
powPID = flywheel.manageFlywheel(vel, robot.shooter1.getCurrentPosition(), robot.shooter2.getCurrentPosition());
velo = flywheel.getVelo(robot.shooter1.getCurrentPosition(), robot.shooter2.getCurrentPosition());
robot.shooter1.setPower(powPID);
robot.shooter2.setPower(powPID);
flywheel.manageFlywheel(vel);
velo = flywheel.getVelo();
spinPID = servo.setSpinPos(spindexer);
robot.spin1.setPower(spinPID);
@@ -207,6 +212,7 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
boolean zeroPassed = false;
double currentPos = 0.0;
double prevPos = 0.0;
double stamp = 0.0;
@Override
public boolean run(@NonNull TelemetryPacket telemetryPacket) {
@@ -214,68 +220,86 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
TELE.addLine("shooting");
TELE.update();
powPID = flywheel.manageFlywheel(vel, robot.shooter1.getCurrentPosition(), robot.shooter2.getCurrentPosition());
velo = flywheel.getVelo(robot.shooter1.getCurrentPosition(), robot.shooter2.getCurrentPosition());
robot.shooter1.setPower(powPID);
robot.shooter2.setPower(powPID);
flywheel.manageFlywheel(vel);
velo = flywheel.getVelo();
drive.updatePoseEstimate();
teleStart = drive.localizer.getPose();
robot.intake.setPower(-0.3);
if (ticker == 1) {
robot.transferServo.setPosition(transferServo_in);
initPos = servo.getSpinPos();
finalPos = initPos + 0.6;
if (finalPos > 1.0) {
finalPos = finalPos - 1;
zeroNeeded = true;
} else if (finalPos > 0.95) {
finalPos = 0.0;
zeroNeeded = true;
}
currentPos = initPos;
stamp = getRuntime();
}
ticker++;
if (ticker > 16) {
robot.spin1.setPower(0.08);
robot.spin2.setPower(-0.08);
}
robot.intake.setPower(0);
if (getRuntime() - stamp < 2.7) {
robot.transferServo.setPosition(transferServo_in);
robot.spin1.setPower(-spinPow);
robot.spin2.setPower(spinPow);
return true;
prevPos = currentPos;
currentPos = servo.getSpinPos();
if (zeroNeeded) {
if (currentPos - prevPos < -0.5) {
zeroPassed = true;
}
if (zeroPassed) {
if (currentPos > finalPos) {
robot.spin1.setPower(0);
robot.spin2.setPower(0);
return false;
} else {
return true;
}
} else {
return true;
}
} else {
if (currentPos > finalPos) {
robot.spin1.setPower(0);
robot.spin2.setPower(0);
return false;
} else {
return true;
}
robot.transferServo.setPosition(transferServo_out);
return false;
}
}
};
}
public Action spindexUnjam(double jamTime) {
return new Action() {
double stamp = 0.0;
int ticker = 0;
@Override
public boolean run(@NonNull TelemetryPacket telemetryPacket) {
ticker++;
if (ticker == 1) {
stamp = getRuntime();
}
if (ticker % 12 < 6) {
robot.spin1.setPower(-1);
robot.spin2.setPower(1);
} else {
robot.spin1.setPower(1);
robot.spin2.setPower(-1);
}
if (getRuntime() - stamp > jamTime+0.4) {
robot.intake.setPower(0.5);
return false;
}
else if (getRuntime() - stamp > jamTime) {
robot.intake.setPower(-(getRuntime()-stamp-jamTime)*2.5);
return true;
}
else {
robot.intake.setPower(1);
return true;
}
}
};
}
public Action intake(double intakeTime) {
return new Action() {
double stamp = 0.0;
@@ -291,17 +315,22 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
}
ticker++;
if (ticker % 12 < 3) {
if (ticker % 60 < 12) {
robot.spin1.setPower(-1);
robot.spin2.setPower(1);
} else if (reverse) {
} else if (ticker % 60 < 30) {
robot.spin1.setPower(-0.5);
robot.spin2.setPower(0.5);
}
else if (ticker % 60 < 42) {
robot.spin1.setPower(1);
robot.spin2.setPower(-1);
} else {
robot.spin1.setPower(-0.15);
robot.spin2.setPower(0.15);
}
else {
robot.spin1.setPower(0.5);
robot.spin2.setPower(-0.5);
}
robot.intake.setPower(1);
TELE.addData("Reverse?", reverse);
@@ -319,9 +348,10 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
} else {
if (ticker % 4 == 0) {
spinCurrentPos = servo.getSpinPos();
reverse = Math.abs(spinCurrentPos - spinInitPos) < 0.02;
reverse = Math.abs(spinCurrentPos - spinInitPos) < 0.03;
spinInitPos = spinCurrentPos;
}
return true;
}
}
@@ -340,10 +370,8 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
}
ticker++;
powPID = flywheel.manageFlywheel(vel, robot.shooter1.getCurrentPosition(), robot.shooter2.getCurrentPosition());
velo = flywheel.getVelo(robot.shooter1.getCurrentPosition(), robot.shooter2.getCurrentPosition());
robot.shooter1.setPower(powPID);
robot.shooter2.setPower(powPID);
flywheel.manageFlywheel(vel);
velo = flywheel.getVelo();
double s1D = robot.color1.getDistance(DistanceUnit.MM);
double s2D = robot.color2.getDistance(DistanceUnit.MM);
@@ -418,7 +446,7 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
robot = new Robot(hardwareMap);
flywheel = new FlywheelV2();
flywheel = new Flywheel(hardwareMap);
TELE = new MultipleTelemetry(
telemetry, FtcDashboard.getInstance().getTelemetry()
@@ -438,24 +466,27 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
TrajectoryActionBuilder pickup1 = drive.actionBuilder(new Pose2d(bx1, by1, bh1))
.strafeToLinearHeading(new Vector2d(bx2a, by2a), bh2a)
.strafeToLinearHeading(new Vector2d(bx2b, by2b), bh2b);
.strafeToLinearHeading(new Vector2d(bx2b, by2b), bh2b,
new TranslationalVelConstraint(slowSpeed));
//
// TrajectoryActionBuilder lever = drive.actionBuilder(new Pose2d(bx2b, by2b, bh2b))
// .strafeToLinearHeading(new Vector2d(bx2c, by2c), bh2c);
TrajectoryActionBuilder lever = drive.actionBuilder(new Pose2d(bx2b, by2b, bh2b))
.strafeToLinearHeading(new Vector2d(bx2c, by2c), bh2c);
TrajectoryActionBuilder shoot1 = drive.actionBuilder(new Pose2d(bx2c, by2c, bh2c))
TrajectoryActionBuilder shoot1 = drive.actionBuilder(new Pose2d(bx2b, by2b, bh2b))
.strafeToLinearHeading(new Vector2d(bx1, by1), bh1);
TrajectoryActionBuilder pickup2 = drive.actionBuilder(new Pose2d(bx1, by1, bh1))
.strafeToLinearHeading(new Vector2d(bx3a, by3a), bh3a)
.strafeToLinearHeading(new Vector2d(bx3b, by3b), bh3b);
.strafeToLinearHeading(new Vector2d(bx3b, by3b), bh3b,
new TranslationalVelConstraint(slowSpeed));
TrajectoryActionBuilder shoot2 = drive.actionBuilder(new Pose2d(bx3b, by3b, bh3b))
.strafeToLinearHeading(new Vector2d(bx1, by1), bh1);
TrajectoryActionBuilder pickup3 = drive.actionBuilder(new Pose2d(bx1, by1, bh1))
.strafeToLinearHeading(new Vector2d(bx4a, by4a), bh4a)
.strafeToLinearHeading(new Vector2d(bx4b, by4b), bh4b);
.strafeToLinearHeading(new Vector2d(bx4b, by4b), bh4b,
new TranslationalVelConstraint(slowSpeed));
TrajectoryActionBuilder shoot3 = drive.actionBuilder(new Pose2d(bx4b, by4b, bh4b))
.strafeToLinearHeading(new Vector2d(bx1, by1), bh1);
@@ -471,6 +502,7 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
if (gamepad2.crossWasPressed()) {
redAlliance = !redAlliance;
}
double turretPID;
@@ -482,26 +514,29 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
pickup1 = drive.actionBuilder(new Pose2d(rx1, ry1, rh1))
.strafeToLinearHeading(new Vector2d(rx2a, ry2a), rh2a)
.strafeToLinearHeading(new Vector2d(rx2b, ry2b), rh2b);
.strafeToLinearHeading(new Vector2d(rx2b, ry2b), rh2b,
new TranslationalVelConstraint(slowSpeed));
lever = drive.actionBuilder(new Pose2d(rx2b, ry2b, rh2b))
.strafeToLinearHeading(new Vector2d(rx2c, ry2c), rh2c);
// lever = drive.actionBuilder(new Pose2d(rx2b, ry2b, rh2b))
// .strafeToLinearHeading(new Vector2d(rx2c, ry2c), rh2c);
shoot1 = drive.actionBuilder(new Pose2d(rx2c, ry2c, rh2c))
shoot1 = drive.actionBuilder(new Pose2d(rx2b, ry2b, rh2b))
.strafeToLinearHeading(new Vector2d(rx1, ry1), rh1);
pickup2 = drive.actionBuilder(new Pose2d(rx1, ry1, rh1))
.strafeToLinearHeading(new Vector2d(rx3a, ry3a), rh3a)
.strafeToLinearHeading(new Vector2d(rx3b, ry3b), rh3b);
.strafeToLinearHeading(new Vector2d(rx3b, ry3b), rh3b,
new TranslationalVelConstraint(slowSpeed));
shoot2 = drive.actionBuilder(new Pose2d(rx3b, ry3b, rh3b))
.strafeToLinearHeading(new Vector2d(rx1, ry1), rh1);
pickup3 = drive.actionBuilder(new Pose2d(rx1,ry1, rh1))
pickup3 = drive.actionBuilder(new Pose2d(rx1, ry1, rh1))
.strafeToLinearHeading(new Vector2d(rx4a, ry4a), rh4a)
.strafeToLinearHeading(new Vector2d(rx4b, ry4b), rh4b);
shoot3 = drive.actionBuilder(new Pose2d(bx4b, by4b, bh4b))
.strafeToLinearHeading(new Vector2d(bx1, by1), bh1);
.strafeToLinearHeading(new Vector2d(rx4b, ry4b), rh4b,
new TranslationalVelConstraint(slowSpeed));
shoot3 = drive.actionBuilder(new Pose2d(rx4b, ry4b, rh4b))
.strafeToLinearHeading(new Vector2d(rx1, ry1), rh1);
} else {
turretPID = turret_blueClose;
@@ -511,17 +546,26 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
pickup1 = drive.actionBuilder(new Pose2d(bx1, by1, bh1))
.strafeToLinearHeading(new Vector2d(bx2a, by2a), bh2a)
.strafeToLinearHeading(new Vector2d(bx2b, by2b), bh2b);
.strafeToLinearHeading(new Vector2d(bx2b, by2b), bh2b,
new TranslationalVelConstraint(slowSpeed));
shoot1 = drive.actionBuilder(new Pose2d(bx2c, by2c, bh2c))
shoot1 = drive.actionBuilder(new Pose2d(bx2b, by2b, bh2b))
.strafeToLinearHeading(new Vector2d(bx1, by1), bh1);
pickup2 = drive.actionBuilder(new Pose2d(bx1, by1, bh1))
.strafeToLinearHeading(new Vector2d(bx3a, by3a), bh3a)
.strafeToLinearHeading(new Vector2d(bx3b, by3b), bh3b);
.strafeToLinearHeading(new Vector2d(bx3b, by3b), bh3b,
new TranslationalVelConstraint(slowSpeed));
shoot2 = drive.actionBuilder(new Pose2d(bx3b, by3b, bh3b))
.strafeToLinearHeading(new Vector2d(bx1, by1), bh1);
pickup3 = drive.actionBuilder(new Pose2d(bx1, by1, bh1))
.strafeToLinearHeading(new Vector2d(bx4a, by4a), bh4a)
.strafeToLinearHeading(new Vector2d(bx4b, by4b), bh4b,
new TranslationalVelConstraint(slowSpeed));
shoot3 = drive.actionBuilder(new Pose2d(bx4b, by4b, bh4b))
.strafeToLinearHeading(new Vector2d(bx1, by1), bh1);
}
robot.turr1.setPosition(turretPID);
@@ -573,8 +617,9 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
Actions.runBlocking(
new SequentialAction(
lever.build(),
shoot1.build()
shoot1.build(),
spindexUnjam(spinUnjamTime)
)
);
@@ -604,7 +649,8 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
Actions.runBlocking(
new ParallelAction(
shoot2.build()
shoot2.build(),
spindexUnjam(spinUnjamTime)
)
);
@@ -630,7 +676,9 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
Actions.runBlocking(
new ParallelAction(
shoot3.build()
shoot3.build(),
spindexUnjam(spinUnjamTime)
)
);
@@ -662,7 +710,7 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
bearing = result.getTx();
}
}
double turretPos = robot.turr1Pos.getCurrentPosition() - (bearing / 1300);
double turretPos = (bearing / 1300);
robot.turr1.setPosition(turretPos);
robot.turr2.setPosition(1 - turretPos);
}

View File

@@ -12,32 +12,32 @@ public class Poses {
public static double relativeGoalHeight = goalHeight - turretHeight;
public static Pose2d goalPose = new Pose2d(-15, 0, 0);
public static Pose2d goalPose = new Pose2d(-10, 0, 0);
public static double rx1 = 45, ry1 = -7, rh1 = 0;
public static double rx2a = 45, ry2a = 5, rh2a = Math.toRadians(140);
public static double rx2b = 31, ry2b = 32, rh2b = Math.toRadians(140);
public static double rx1 = 40, ry1 = -7, rh1 = 0;
public static double rx2a = 41, ry2a = 18, rh2a = Math.toRadians(140);
public static double rx2b = 23, ry2b = 36, rh2b = Math.toRadians(140);
public static double rx2c = 34, ry2c = 50, rh2c = Math.toRadians(140);
public static double rx3a = 58, ry3a = 42, rh3a = Math.toRadians(140);
public static double rx3b = 34, ry3b = 58, rh3b = Math.toRadians(140);
public static double rx3a = 55, ry3a = 39, rh3a = Math.toRadians(140);
public static double rx3b = 33, ry3b = 61, rh3b = Math.toRadians(140);
public static double rx4a = 71, ry4a = 60, rh4a = Math.toRadians(140);
public static double rx4b = 79, ry4b = 79, rh4b = Math.toRadians(140);
public static double rx4a = 72, ry4a = 55, rh4a = Math.toRadians(140);
public static double rx4b = 48, ry4b = 79, rh4b = Math.toRadians(140);
public static double bx1 = 45, by1 = 6, bh1 = 0;
public static double bx2a = 53, by2a = -7, bh2a = Math.toRadians(-140);
public static double bx2b = 23, by2b = -39, bh2b = Math.toRadians(-140);
public static double bx2c = 40, by2c = -50, bh2c = Math.toRadians(-140);
public static double bx1 = 40, by1 = 7, bh1 = 0;
public static double bx2a = 45, by2a = -18, bh2a = Math.toRadians(-140);
public static double bx2b = 25, by2b = -38, bh2b = Math.toRadians(-140);
public static double bx2c = 34, by2c = -50, bh2c = Math.toRadians(-140);
public static double bx3a = 56, by3a = -34, bh3a = Math.toRadians(-140);
public static double bx3b = 34, by3b = -58, bh3b = Math.toRadians(-140);
public static double bx3a = 55, by3a = -43, bh3a = Math.toRadians(-140);
public static double bx3b = 37, by3b = -61, bh3b = Math.toRadians(-140);
public static double bx4a = 69, by4a = -60, bh4a = Math.toRadians(-140);
public static double bx4b = 75, by4b = -79, bh4b = Math.toRadians(-140);
public static double bx4a = 72, by4a = -55, bh4a = Math.toRadians(-140);
public static double bx4b = 48, by4b = -79, bh4b = Math.toRadians(-140);
public static double rfx1 = 10, rfy1 = 0, rfh1 = 0; //TODO: test this
public static Pose2d teleStart = new Pose2d(rx1, ry1, rh1);
public static Pose2d teleStart = new Pose2d(0, 0, 0);
}

View File

@@ -5,16 +5,16 @@ import com.acmerobotics.dashboard.config.Config;
@Config
public class ServoPositions {
public static double spindexer_intakePos1 = 0.39;
public static double spindexer_intakePos1 = 0.19;
public static double spindexer_intakePos2 = 0.5;
public static double spindexer_intakePos2 = 0.35;//0.5;
public static double spindexer_intakePos3 = 0.66;
public static double spindexer_intakePos3 = 0.51;//0.66;
public static double spindexer_outtakeBall3 = 0.42;
public static double spindexer_outtakeBall3 = 0.47;
public static double spindexer_outtakeBall2 = 0.74;
public static double spindexer_outtakeBall1 = 0.58;
public static double spindexer_outtakeBall2 = 0.31;
public static double spindexer_outtakeBall1 = 0.15;
public static double transferServo_out = 0.15;
@@ -24,7 +24,7 @@ public class ServoPositions {
public static double hoodDefault = 0.6;
public static double hoodAuto = 0.55;
public static double hoodAuto = 0.27;
public static double hoodAutoFar = 0.5; //TODO: change this;
@@ -42,4 +42,8 @@ public class ServoPositions {
public static double turret_detectBlueClose = 0.6;
public static double turrDefault = 0.4;
public static double turrMin = 0.2;
public static double turrMax = 0.8;
}

View File

@@ -19,6 +19,6 @@ public class ShooterVars {
public static double maxStep = 0.06; // prevents sudden jumps
// VELOCITY CONSTANTS
public static int AUTO_CLOSE_VEL = 3025; //3300;
public static int AUTO_CLOSE_VEL = 3175; //3300;
public static int AUTO_FAR_VEL = 4000; //TODO: test this
}

View File

@@ -129,7 +129,7 @@ public class TeleopV2 extends LinearOpMode {
telemetry, FtcDashboard.getInstance().getTelemetry()
);
servo = new Servos(hardwareMap);
flywheel = new Flywheel();
flywheel = new Flywheel(hardwareMap);
drive = new MecanumDrive(hardwareMap, teleStart);
@@ -282,12 +282,9 @@ public class TeleopV2 extends LinearOpMode {
//SHOOTER:
double powPID = flywheel.manageFlywheel((int) vel, robot.shooter1.getCurrentPosition());
double powPID = flywheel.manageFlywheel((int) vel);
robot.shooter1.setPower(powPID);
robot.shooter2.setPower(powPID);
robot.transfer.setPower(1);
robot.transfer.setPower(1);
//TURRET:

View File

@@ -1,11 +1,9 @@
package org.firstinspires.ftc.teamcode.teleop;
import static org.firstinspires.ftc.teamcode.constants.Color.redAlliance;
import static org.firstinspires.ftc.teamcode.constants.Poses.teleStart;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.spindexer_intakePos1;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.transferServo_in;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.transferServo_out;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.turrDefault;
import static org.firstinspires.ftc.teamcode.utils.Servos.spinD;
import static org.firstinspires.ftc.teamcode.utils.Servos.spinF;
import static org.firstinspires.ftc.teamcode.utils.Servos.spinI;
@@ -28,9 +26,13 @@ import com.qualcomm.robotcore.hardware.DcMotor;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
import org.firstinspires.ftc.teamcode.libs.RR.MecanumDrive;
import org.firstinspires.ftc.teamcode.utils.FlywheelV2;
import org.firstinspires.ftc.teamcode.utils.AprilTagWebcam;
import org.firstinspires.ftc.teamcode.utils.Flywheel;
import org.firstinspires.ftc.teamcode.utils.Robot;
import org.firstinspires.ftc.teamcode.utils.Servos;
import org.firstinspires.ftc.teamcode.utils.Spindexer;
import org.firstinspires.ftc.teamcode.utils.Targeting;
import org.firstinspires.ftc.teamcode.utils.Turret;
import java.util.ArrayList;
import java.util.List;
@@ -45,12 +47,14 @@ public class TeleopV3 extends LinearOpMode {
public static double shootStamp2 = 0.0;
public static double spinningPow = 0.2;
public static double spindexPos = spindexer_intakePos1;
public static double spinPow = 0.08;
public static double bMult = -1, bDiv = 130000;
public static double spinPow = 0.09;
public static double bMult = 1, bDiv = 2200;
public static double tp = 0.8, ti = 0.001, td = 0.0315, tf = 0;
public static boolean manualTurret = false;
public static boolean manualTurret = true;
public double vel = 3000;
public boolean autoVel = true;
public boolean targetingVel = true;
public boolean targetingHood = true;
public double manualOffset = 0.0;
public boolean autoHood = true;
public boolean green1 = false;
@@ -67,8 +71,11 @@ public class TeleopV3 extends LinearOpMode {
Robot robot;
MultipleTelemetry TELE;
Servos servo;
FlywheelV2 flywheel;
Flywheel flywheel;
MecanumDrive drive;
Spindexer spindexer;
Targeting targeting;
Targeting.Settings targetingSettings;
double autoHoodOffset = 0.0;
int shooterTicker = 0;
@@ -93,7 +100,8 @@ public class TeleopV3 extends LinearOpMode {
boolean shootA = true;
boolean shootB = true;
boolean shootC = true;
boolean autoSpintake = true;
boolean autoSpintake = false;
boolean enableSpindexerManager = true;
List<Integer> shootOrder = new ArrayList<>();
boolean outtake1 = false;
boolean outtake2 = false;
@@ -112,6 +120,7 @@ public class TeleopV3 extends LinearOpMode {
private double transferStamp = 0.0;
private int tickerA = 1;
private boolean transferIn = false;
boolean turretInterpolate = false;
public static double velPrediction(double distance) {
if (distance < 30) {
@@ -139,22 +148,29 @@ public class TeleopV3 extends LinearOpMode {
robot = new Robot(hardwareMap);
TELE = new MultipleTelemetry(telemetry, FtcDashboard.getInstance().getTelemetry());
servo = new Servos(hardwareMap);
flywheel = new FlywheelV2();
flywheel = new Flywheel(hardwareMap);
drive = new MecanumDrive(hardwareMap, teleStart);
spindexer = new Spindexer(hardwareMap);
targeting = new Targeting();
targetingSettings = new Targeting.Settings(0.0, 0.0);
PIDFController tController = new PIDFController(tp, ti, td, tf);
tController.setTolerance(0.001);
//
// if (redAlliance) {
// robot.limelight.pipelineSwitch(3);
// } else {
// robot.limelight.pipelineSwitch(2);
// }
// robot.limelight.start();
AprilTagWebcam webcam = new AprilTagWebcam();
webcam.init(robot, TELE);
if (redAlliance) {
robot.limelight.pipelineSwitch(3);
} else {
robot.limelight.pipelineSwitch(2);
}
robot.limelight.start();
Turret turret = new Turret(robot, TELE, webcam);
waitForStart();
waitForStart();
if (isStopRequested()) return;
@@ -234,31 +250,24 @@ public class TeleopV3 extends LinearOpMode {
if (gamepad1.right_bumper) {
robot.transferServo.setPosition(transferServo_out);
intakeTicker++;
if (intakeTicker % 4 == 0) {
spinCurrentPos = servo.getSpinPos();
if (Math.abs(spinCurrentPos - spinInitPos) < 0.02) {
reverse = true;
} else {
reverse = false;
}
spinInitPos = spinCurrentPos;
}
if (intakeTicker % 12 < 3) {
if (intakeTicker % 20 < 2) {
robot.spin1.setPower(-1);
robot.spin2.setPower(1);
} else if (reverse) {
} else if (intakeTicker % 20 < 10) {
robot.spin1.setPower(-0.5);
robot.spin2.setPower(0.5);
} else if (intakeTicker % 20 < 12) {
robot.spin1.setPower(1);
robot.spin2.setPower(-1);
} else {
robot.spin1.setPower(-spinningPow);
robot.spin2.setPower(spinningPow);
robot.spin1.setPower(0.5);
robot.spin2.setPower(-0.5);
}
robot.intake.setPower(1);
intakeStamp = getRuntime();
TELE.addData("Reverse?", reverse);
@@ -376,47 +385,26 @@ public class TeleopV3 extends LinearOpMode {
double robotY = robY - yOffset;
double robotHeading = drive.localizer.getPose().heading.toDouble();
double goalX = -10;
double goalX = -15;
double goalY = 0;
double dx = goalX - robotX; // delta x from robot to goal
double dy = goalY - robotY; // delta y from robot to goal
double dx = robotX - goalX; // delta x from robot to goal
double dy = robotY - goalY; // delta y from robot to goal
Pose2d deltaPose = new Pose2d(dx, dy, robotHeading);
double distanceToGoal = Math.sqrt(dx * dx + dy * dy);
desiredTurretAngle = (Math.toDegrees(Math.atan2(dy, dx)) + 360) % 360;
targetingSettings = targeting.calculateSettings
(robotX,robotY,robotHeading,0.0, turretInterpolate);
desiredTurretAngle += manualOffset;
turret.trackGoal(deltaPose);
offset = desiredTurretAngle - 180 - (Math.toDegrees(robotHeading - headingOffset));
if (offset > 135) {
offset -= 360;
}
double pos = turrDefault;
TELE.addData("offset", offset);
pos -= offset * ((double) 1 / 360);
if (pos < 0.13) {
pos = 0.13;
} else if (pos > 0.83) {
pos = 0.83;
}
//SHOOTER:
double powPID = flywheel.manageFlywheel((int) vel, robot.shooter1.getCurrentPosition(), robot.shooter2.getCurrentPosition());
robot.shooter1.setPower(powPID);
robot.shooter2.setPower(powPID);
webcam.update();
//VELOCITY AUTOMATIC
if (autoVel) {
if (targetingVel) {
vel = targetingSettings.flywheelRPM;
} else if (autoVel) {
vel = velPrediction(distanceToGoal);
} else {
vel = manualVel;
@@ -438,30 +426,25 @@ public class TeleopV3 extends LinearOpMode {
manualVel = 3100;
}
//SHOOTER:
flywheel.manageFlywheel(vel);
//TODO: test the camera teleop code
TELE.addData("posS2", pos);
// if (y < 0.3 && y > -0.3 && x < 0.3 && x > -0.3 && rx < 0.3 && rx > -0.3) { //not moving
// double bearing;
//
// LLResult result = robot.limelight.getLatestResult();
// LLResult result = robot.light.getLatestResult();
// if (result != null) {
// if (result.isValid()) {
// bearing = result.getTx() * bMult;
// overrideTurr = true;
//
// double bearingCorrection = bearing / bDiv;
//
// // deadband: ignore tiny noise
// if (Math.abs(bearing) > 0.3 && camTicker < 8) {
// error += bearingCorrection;
//
// error += bearingCorrection;
//
// }
// camTicker++;
// TELE.addData("tx", bearing);
// TELE.addData("tx", bearingCorrection);
// TELE.addData("ty", result.getTy());
// }
// }
@@ -471,36 +454,12 @@ public class TeleopV3 extends LinearOpMode {
// overrideTurr = false;
// }
if (!overrideTurr) {
turretPos = pos;
}
TELE.addData("posS3", turretPos);
if (manualTurret) {
pos = turrDefault + (manualOffset / 100);
}
if (!overrideTurr) {
turretPos = pos;
}
if (gamepad2.dpad_right || gamepad1.dpad_right) {
manualOffset -= 2;
} else if (gamepad2.dpad_left || gamepad1.dpad_left) {
manualOffset += 2;
}
robot.turr1.setPosition(pos);
robot.turr2.setPosition(1-pos);
//HOOD:
if (autoHood) {
robot.hood.setPosition(hoodAnglePrediction(distanceToGoal) + autoHoodOffset);
if (targetingHood) {
robot.hood.setPosition(targetingSettings.hoodAngle);
} else if (autoHood) {
robot.hood.setPosition(0.15 + hoodOffset);
} else {
robot.hood.setPosition(hoodDefaultPos + hoodOffset);
}
@@ -518,7 +477,7 @@ public class TeleopV3 extends LinearOpMode {
if (gamepad2.cross) {
manualOffset = 0;
fixedTurret = true;
overrideTurr = true;
}
if (gamepad2.squareWasPressed()) {
@@ -552,26 +511,45 @@ public class TeleopV3 extends LinearOpMode {
// }
// }
if (gamepad1.leftBumperWasPressed()) {
if (gamepad1.left_bumper && !enableSpindexerManager) {
robot.transferServo.setPosition(transferServo_out);
autoSpintake = false;
robot.spin1.setPower(1);
robot.spin2.setPower(-1);
intakeTicker++;
if (intakeTicker % 10 < 1) {
robot.spin1.setPower(-1);
robot.spin2.setPower(1);
} else if (intakeTicker % 10 < 5) {
robot.spin1.setPower(-0.5);
robot.spin2.setPower(0.5);
} else if (intakeTicker % 10 < 6) {
robot.spin1.setPower(1);
robot.spin2.setPower(-1);
} else {
robot.spin1.setPower(0.5);
robot.spin2.setPower(-0.5);
}
intake = false;
reject = false;
robot.intake.setPower(0.5);
}
if (gamepad1.leftBumperWasReleased()) {
if (gamepad1.leftBumperWasReleased() && !enableSpindexerManager) {
shootStamp = getRuntime();
shootAll = true;
spindexPos = spindexer_intakePos1;
shooterTicker = 0;
}
if (shootAll) {
if (shootAll && !enableSpindexerManager) {
TELE.addData("100% works", shootOrder);
@@ -603,6 +581,127 @@ public class TeleopV3 extends LinearOpMode {
}
}
if (enableSpindexerManager) {
if (!shootAll) {
spindexer.processIntake();
}
// RIGHT_BUMPER
if (gamepad1.right_bumper) {
robot.intake.setPower(1);
} else {
robot.intake.setPower(0);
}
// LEFT_BUMPER
if (!shootAll &&
(gamepad1.leftBumperWasReleased() ||
gamepad1.leftBumperWasPressed() ||
gamepad1.left_bumper)) {
shootStamp = getRuntime();
shootAll = true;
shooterTicker = 0;
}
if (shootAll) {
intake = false;
reject = false;
shooterTicker++;
// TODO: Change starting position based on desired order to shoot green ball
spindexPos = spindexer_intakePos1;
if (getRuntime() - shootStamp < 3.5) {
robot.transferServo.setPosition(transferServo_in);
robot.spin1.setPower(-spinPow);
robot.spin2.setPower(spinPow);
} else {
robot.transferServo.setPosition(transferServo_out);
//spindexPos = spindexer_intakePos1;
shootAll = false;
robot.transferServo.setPosition(transferServo_out);
spindexer.resetSpindexer();
spindexer.processIntake();
}
}
}
//
// if (shootAll) {
//
// TELE.addData("100% works", shootOrder);
//
// intake = false;
// reject = false;
//
// shooterTicker++;
//
// spindexPos = spindexer_intakePos1;
//
// if (getRuntime() - shootStamp < 1) {
//
// if (servo.spinEqual(spindexer_outtakeBall3) || ((getRuntime()-shootStamp)>0.4)){
// robot.transferServo.setPosition(transferServo_in);
//
// } else {
// robot.transferServo.setPosition(transferServo_out);
//
// }
//
//
// autoSpintake = true;
//
// spindexPos = spindexer_outtakeBall3;
// robot.intake.setPower(0.5);
//
// }
//
// else if (getRuntime() - shootStamp < 1.8) {
//
// robot.transferServo.setPosition(transferServo_in);
//
// autoSpintake = true;
// robot.intake.setPower(0);
//
// spindexPos = spindexer_outtakeBall2;
//
// }
// else if (getRuntime() - shootStamp < 2.6) {
//
// robot.transferServo.setPosition(transferServo_in);
//
// autoSpintake = false;
//
// robot.spin1.setPower(1);
// robot.spin2.setPower(-1);
//
// }
//
// else {
// robot.transferServo.setPosition(transferServo_out);
// spindexPos = spindexer_intakePos1;
//
// shootAll = false;
//
// autoSpintake = true;
//
// robot.transferServo.setPosition(transferServo_out);
// }
//
// }
// if (gamepad1.squareWasPressed()) {
// square = true;
// shootStamp = getRuntime();
@@ -705,7 +804,6 @@ public class TeleopV3 extends LinearOpMode {
// }
//EXTRA STUFFINESS:
drive.updatePoseEstimate();
for (LynxModule hub : allHubs) {
@@ -721,13 +819,30 @@ public class TeleopV3 extends LinearOpMode {
TELE.addData("distanceToGoal", distanceToGoal);
TELE.addData("hood", robot.hood.getPosition());
TELE.addData("targetVel", vel);
TELE.addData("Velocity", flywheel.getVelo(robot.shooter1.getCurrentPosition(), robot.shooter2.getCurrentPosition()));
TELE.addData("Velocity", flywheel.getVelo());
TELE.addData("shootOrder", shootOrder);
TELE.addData("oddColor", oddBallColor);
// Spindexer Debug
TELE.addData("spinEqual", servo.spinEqual(spindexer_intakePos1));
TELE.addData("spinCommmandedPos", spindexer.commandedIntakePosition);
TELE.addData("spinIntakeState", spindexer.currentIntakeState);
TELE.addData("spinTestCounter", spindexer.counter);
TELE.addData("autoSpintake", autoSpintake);
//TELE.addData("distanceRearCenter", spindexer.distanceRearCenter);
//TELE.addData("distanceFrontDriver", spindexer.distanceFrontDriver);
//TELE.addData("distanceFrontPassenger", spindexer.distanceFrontPassenger);
TELE.addData("shootall commanded", shootAll);
// Targeting Debug
TELE.addData("robotX", robotX);
TELE.addData( "robotY", robotY);
TELE.addData("robotInchesX", targeting.robotInchesX);
TELE.addData( "robotInchesY", targeting.robotInchesY);
TELE.addData("Targeting Interpolate", turretInterpolate);
TELE.addData("Targeting GridX", targeting.robotGridX);
TELE.addData("Targeting GridY", targeting.robotGridY);
TELE.addData("Targeting FlyWheel", targetingSettings.flywheelRPM);
TELE.addData("Targeting HoodAngle", targetingSettings.hoodAngle);
TELE.addData("timeSinceStamp", getRuntime() - shootStamp);
TELE.update();

View File

@@ -20,7 +20,7 @@ public class LimelightTest extends LinearOpMode {
public static int mode = 0; //0 for bare testing, 1 for obelisk, 2 for blue track, 3 for red track
@Override
public void runOpMode() throws InterruptedException {
Limelight3A limelight = hardwareMap.get(Limelight3A.class, "Limelight");
Limelight3A limelight = hardwareMap.get(Limelight3A.class, "limelight");
TELE = new MultipleTelemetry(telemetry, FtcDashboard.getInstance().getTelemetry());
limelight.pipelineSwitch(pipeline);
waitForStart();

View File

@@ -52,7 +52,6 @@ public class PIDServoTest extends LinearOpMode {
}
telemetry.addData("pos", pos);
telemetry.addData("Turret Voltage", robot.turr1Pos.getCurrentPosition());
telemetry.addData("Spindex Voltage", robot.spin1Pos.getVoltage());
telemetry.addData("target", target);
telemetry.addData("Mode", mode);

View File

@@ -9,7 +9,7 @@ import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import org.firstinspires.ftc.teamcode.utils.FlywheelV2;
import org.firstinspires.ftc.teamcode.utils.Flywheel;
import org.firstinspires.ftc.teamcode.utils.Robot;
@Config
@@ -21,12 +21,17 @@ public class ShooterTest extends LinearOpMode {
// --- CONSTANTS YOU TUNE ---
//TODO: @Daniel FIX THE BELOW CONSTANTS A LITTLE IF NEEDED
public static double Velocity = 0.0;
public static double P = 40.0;
public static double I = 0.3;
public static double D = 7.0;
public static double F = 10.0;
public static double transferPower = 1.0;
public static double hoodPos = 0.501;
public static double turretPos = 0.501;
public static boolean shoot = false;
Robot robot;
FlywheelV2 flywheel;
Flywheel flywheel;
@Override
public void runOpMode() throws InterruptedException {
@@ -34,7 +39,7 @@ public class ShooterTest extends LinearOpMode {
robot = new Robot(hardwareMap);
DcMotorEx leftShooter = robot.shooter1;
DcMotorEx rightShooter = robot.shooter2;
flywheel = new FlywheelV2();
flywheel = new Flywheel(hardwareMap);
MultipleTelemetry TELE = new MultipleTelemetry(
telemetry, FtcDashboard.getInstance().getTelemetry()
@@ -50,10 +55,8 @@ public class ShooterTest extends LinearOpMode {
rightShooter.setPower(parameter);
leftShooter.setPower(parameter);
} else if (mode == 1) {
double powPID = flywheel.manageFlywheel((int) parameter, robot.shooter1.getCurrentPosition(), robot.shooter2.getCurrentPosition());
rightShooter.setPower(powPID);
leftShooter.setPower(powPID);
TELE.addData("PIDPower", powPID);
flywheel.setPIDF(P,I,D,F);
flywheel.manageFlywheel((int) Velocity);
}
if (hoodPos != 0.501) {
@@ -67,7 +70,7 @@ public class ShooterTest extends LinearOpMode {
} else {
robot.transferServo.setPosition(transferServo_out);
}
TELE.addData("Velocity", flywheel.getVelo(robot.shooter1.getCurrentPosition(), robot.shooter2.getCurrentPosition()));
TELE.addData("Velocity", flywheel.getVelo());
TELE.addData("Velocity 1", flywheel.getVelo1());
TELE.addData("Velocity 2", flywheel.getVelo2());
TELE.addData("Power", robot.shooter1.getPower());

View File

@@ -0,0 +1,50 @@
package org.firstinspires.ftc.teamcode.tests;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.acmerobotics.roadrunner.Pose2d;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import org.firstinspires.ftc.teamcode.libs.RR.MecanumDrive;
import org.firstinspires.ftc.teamcode.utils.AprilTagWebcam;
import org.firstinspires.ftc.teamcode.utils.Robot;
import org.firstinspires.ftc.teamcode.utils.Turret;
import org.firstinspires.ftc.vision.apriltag.AprilTagDetection;
@Autonomous
@Config
public class TurretTest extends LinearOpMode {
@Override
public void runOpMode() throws InterruptedException {
Robot robot = new Robot(hardwareMap);
MultipleTelemetry TELE = new MultipleTelemetry(
telemetry, FtcDashboard.getInstance().getTelemetry()
);
AprilTagWebcam webcam = new AprilTagWebcam();
webcam.init(robot, TELE);
Turret turret = new Turret(robot, TELE, webcam);
waitForStart();
MecanumDrive drive = new MecanumDrive(hardwareMap, new Pose2d(15, 0,0));
while(opModeIsActive()){
drive.updatePoseEstimate();
turret.trackGoal(drive.localizer.getPose());
webcam.update();
webcam.displayAllTelemetry();
TELE.update();
}
}
}

View File

@@ -1,88 +1,76 @@
package org.firstinspires.ftc.teamcode.utils;
import static org.firstinspires.ftc.teamcode.constants.ShooterVars.kP;
import static org.firstinspires.ftc.teamcode.constants.ShooterVars.maxStep;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.hardware.PIDFCoefficients;
public class Flywheel {
Robot robot;
MultipleTelemetry TELE;
double initPos = 0.0;
double stamp = 0.0;
double stamp1 = 0.0;
double ticker = 0.0;
double currentPos = 0.0;
public PIDFCoefficients shooterPIDF1, shooterPIDF2;
double velo = 0.0;
double velo1 = 0.0;
double velo2 = 0.0;
double velo3 = 0.0;
double velo4 = 0.0;
double velo5 = 0.0;
double targetVelocity = 0.0;
double powPID = 0.0;
boolean steady = false;
public Flywheel () {
//robot = new Robot(hardwareMap);
public Flywheel (HardwareMap hardwareMap) {
robot = new Robot(hardwareMap);
shooterPIDF1 = new PIDFCoefficients
(robot.shooterPIDF_P, robot.shooterPIDF_I, robot.shooterPIDF_D, robot.shooterPIDF_F);
shooterPIDF2 = new PIDFCoefficients
(robot.shooterPIDF_P, robot.shooterPIDF_I, robot.shooterPIDF_D, robot.shooterPIDF_F);
}
public double getVelo () {
return velo;
}
public double getVelo1 () {
return velo1;
}
public double getVelo2 () {
return velo2;
}
public boolean getSteady() {
return steady;
}
private double getTimeSeconds ()
{
return (double) System.currentTimeMillis()/1000.0;
// Set the robot PIDF for the next cycle.
public void setPIDF(double p, double i, double d, double f) {
robot.shooterPIDF.p = p;
robot.shooterPIDF.i = i;
robot.shooterPIDF.d = d;
robot.shooterPIDF.f = f;
}
// Convert from RPM to Ticks per Second
private double RPM_to_TPS (double RPM) { return (RPM*28.0)/60.0;}
public double manageFlywheel(int commandedVelocity, double shooter1CurPos) {
// Convert from Ticks per Second to RPM
private double TPS_to_RPM (double TPS) { return (TPS*60.0)/28.0;}
public double manageFlywheel(double commandedVelocity) {
targetVelocity = commandedVelocity;
ticker++;
if (ticker % 2 == 0) {
velo5 = velo4;
velo4 = velo3;
velo3 = velo2;
velo2 = velo1;
// Add code here to set PIDF based on desired RPM
//robot.shooterPIDF.p = P;
//robot.shooterPIDF.i = I;
//robot.shooterPIDF.d = D;
//robot.shooterPIDF.f = F;
currentPos = shooter1CurPos / 2048;
stamp = getTimeSeconds(); //getRuntime();
velo1 = -60 * ((currentPos - initPos) / (stamp - stamp1));
initPos = currentPos;
stamp1 = stamp;
robot.shooter1.setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, shooterPIDF1);
robot.shooter2.setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, shooterPIDF2);
robot.shooter1.setVelocity(RPM_to_TPS(targetVelocity));
robot.shooter2.setVelocity(RPM_to_TPS(targetVelocity));
velo = (velo1 + velo2 + velo3 + velo4 + velo5) / 5;
}
// Flywheel control code here
if (targetVelocity - velo > 500) {
powPID = 1.0;
} else if (velo - targetVelocity > 500){
powPID = 0.0;
} else {
double feed = Math.log((668.39 / (targetVelocity + 591.96)) - 0.116) / -4.18;
// --- PROPORTIONAL CORRECTION ---
double error = targetVelocity - velo;
double correction = kP * error;
// limit how fast power changes (prevents oscillation)
correction = Math.max(-maxStep, Math.min(maxStep, correction));
// --- FINAL MOTOR POWER ---
powPID = feed + correction;
// clamp to allowed range
powPID = Math.max(0, Math.min(1, powPID));
}
// Record Current Velocity
velo1 = TPS_to_RPM(robot.shooter1.getVelocity());
velo2 = TPS_to_RPM(robot.shooter2.getVelocity());
velo = Math.max(velo1,velo2);
// really should be a running average of the last 5
steady = (Math.abs(targetVelocity - velo) < 100.0);
steady = (Math.abs(targetVelocity - velo) < 200.0);
return powPID;
}

View File

@@ -71,7 +71,6 @@ public class PositionalServoProgrammer extends LinearOpMode {
TELE.addData("spindexer voltage 2", robot.spin2Pos.getVoltage());
TELE.addData("hood pos", robot.hood.getPosition());
TELE.addData("transferServo voltage", robot.transferServoPos.getVoltage());
TELE.addData("turret voltage", robot.turr1Pos.getCurrentPosition());
TELE.addData("spindexer pow", robot.spin1.getPower());
TELE.update();
}

View File

@@ -1,5 +1,6 @@
package org.firstinspires.ftc.teamcode.utils;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.hardware.limelightvision.Limelight3A;
import com.qualcomm.hardware.rev.RevColorSensorV3;
import com.qualcomm.robotcore.hardware.AnalogInput;
@@ -8,21 +9,31 @@ import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.DcMotorSimple;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.PIDFCoefficients;
import com.qualcomm.robotcore.hardware.Servo;
import org.firstinspires.ftc.robotcore.external.hardware.camera.WebcamName;
import org.firstinspires.ftc.vision.apriltag.AprilTagProcessor;
@Config
public class Robot {
//Initialize Public Components
public static boolean usingLimelight = false;
public static boolean usingCamera = true;
public DcMotorEx frontLeft;
public DcMotorEx frontRight;
public DcMotorEx backLeft;
public DcMotorEx backRight;
public DcMotorEx intake;
public DcMotorEx transfer;
public PIDFCoefficients shooterPIDF;
public double shooterPIDF_P = 10.0;
public double shooterPIDF_I = 0.6;
public double shooterPIDF_D = 5.0;
public double shooterPIDF_F = 10.0;
public double[] shooterPIDF_StepSizes = {10.0, 1.0, 0.001, 0.0001};
public DcMotorEx shooter1;
public DcMotorEx shooter2;
public Servo hood;
@@ -33,7 +44,7 @@ public class Robot {
public CRServo spin2;
public AnalogInput spin1Pos;
public AnalogInput spin2Pos;
public DcMotorEx turr1Pos;
public AnalogInput turr1Pos;
public AnalogInput transferServoPos;
public AprilTagProcessor aprilTagProcessor;
public WebcamName webcam;
@@ -42,10 +53,6 @@ public class Robot {
public RevColorSensorV3 color3;
public Limelight3A limelight;
public static boolean usingLimelight = true;
public static boolean usingCamera = true;
public Robot(HardwareMap hardwareMap) {
//Define components w/ hardware map
@@ -69,8 +76,13 @@ public class Robot {
shooter2 = hardwareMap.get(DcMotorEx.class, "shooter2");
//TODO: figure out which shooter motor is reversed using ShooterTest and change it in code @KeshavAnandCode
shooter1.setDirection(DcMotorSimple.Direction.REVERSE);
shooter1.setMode(DcMotor.RunMode.RUN_WITHOUT_ENCODER);
shooter2.setMode(DcMotor.RunMode.RUN_WITHOUT_ENCODER);
shooterPIDF = new PIDFCoefficients(shooterPIDF_P, shooterPIDF_I, shooterPIDF_D, shooterPIDF_F);
shooter1.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
shooter1.setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, shooterPIDF);
shooter1.setVelocity(1400);
shooter2.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
shooter2.setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, shooterPIDF);
shooter2.setVelocity(1400);
hood = hardwareMap.get(Servo.class, "hood");
@@ -78,7 +90,7 @@ public class Robot {
turr2 = hardwareMap.get(Servo.class, "t2");
turr1Pos = intake; // Encoder of turret plugged in intake port
turr1Pos = hardwareMap.get(AnalogInput.class, "t1Pos"); // Encoder of turret plugged in intake port
//TODO: check spindexer configuration (both servo and analog input) - check comments in PositionalServoProgrammer
spin1 = hardwareMap.get(CRServo.class, "spin1");
@@ -107,9 +119,9 @@ public class Robot {
color3 = hardwareMap.get(RevColorSensorV3.class, "c3");
if (usingLimelight){
if (usingLimelight) {
limelight = hardwareMap.get(Limelight3A.class, "limelight");
} else if (usingCamera){
} else if (usingCamera) {
webcam = hardwareMap.get(WebcamName.class, "Webcam 1");
aprilTagProcessor = AprilTagProcessor.easyCreateWithDefaults();
}

View File

@@ -44,17 +44,15 @@ public class Servos {
}
public double getTurrPos() {
return (double) ((double) robot.turr1Pos.getCurrentPosition() / 1024.0) * ((double) 44.0 / (double) 77.0);
return 1.0;
}
public double setTurrPos(double pos) {
turretPID.setPIDF(turrP, turrI, turrD, turrF);
return spinPID.calculate(this.getTurrPos(), pos);
return 1.0;
}
public boolean turretEqual(double pos) {
return Math.abs(pos - this.getTurrPos()) < 0.01;
return true;
}
}

View File

@@ -0,0 +1,426 @@
package org.firstinspires.ftc.teamcode.utils;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.arcrobotics.ftclib.controller.PIDFController;
import com.qualcomm.robotcore.hardware.HardwareMap;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.spindexer_intakePos1;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.spindexer_intakePos2;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.spindexer_intakePos3;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.spindexer_outtakeBall1;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.spindexer_outtakeBall2;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.spindexer_outtakeBall3;
import static org.firstinspires.ftc.teamcode.utils.Servos.spinD;
import static org.firstinspires.ftc.teamcode.utils.Servos.spinF;
import static org.firstinspires.ftc.teamcode.utils.Servos.spinI;
import static org.firstinspires.ftc.teamcode.utils.Servos.spinP;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
import org.firstinspires.ftc.teamcode.libs.RR.MecanumDrive;
public class Spindexer {
Robot robot;
Servos servos;
Flywheel flywheel;
MecanumDrive drive;
double lastKnownSpinPos = 0.0;
MultipleTelemetry TELE;
PIDFController spinPID = new PIDFController(spinP, spinI, spinD, spinF);
double spinCurrentPos = 0.0;
public int commandedIntakePosition = 0;
public double distanceRearCenter = 0.0;
public double distanceFrontDriver = 0.0;
public double distanceFrontPassenger = 0.0;
// For Use
enum RotatedBallPositionNames {
REARCENTER,
FRONTDRIVER,
FRONTPASSENGER
}
// Array of commandedIntakePositions with contents
// {RearCenter, FrontDriver, FrontPassenger}
static final int[][] RotatedBallPositions = {{0,2,1}, {1,0,2}, {2,1,0}};
class spindexerBallRoatation {
int rearCenter = 0; // aka commanded Position
int frontDriver = 0;
int frontPassenger = 0;
}
enum IntakeState {
UNKNOWN_START,
UNKNOWN_MOVE,
UNKNOWN_DETECT,
INTAKE,
FINDNEXT,
MOVING,
FULL,
SHOOTNEXT,
SHOOTMOVING,
SHOOTWAIT,
};
public IntakeState currentIntakeState = IntakeState.UNKNOWN_START;
public int unknownColorDetect = 0;
enum BallColor {
UNKNOWN,
GREEN,
PURPLE
};
class BallPosition {
boolean isEmpty = true;
int foundEmpty = 0;
BallColor ballColor = BallColor.UNKNOWN;
}
BallPosition[] ballPositions = new BallPosition[3];
public boolean init () {
return true;
}
public Spindexer(HardwareMap hardwareMap) {
robot = new Robot(hardwareMap);
servos = new Servos(hardwareMap);
flywheel = new Flywheel(hardwareMap);
//TELE = new MultipleTelemetry(telemetry, FtcDashboard.getInstance().getTelemetry());
lastKnownSpinPos = servos.getSpinPos();
ballPositions[0] = new BallPosition();
ballPositions[1] = new BallPosition();
ballPositions[2] = new BallPosition();
}
double[] outakePositions =
{spindexer_outtakeBall1, spindexer_outtakeBall2, spindexer_outtakeBall3};
double[] intakePositions =
{spindexer_intakePos1, spindexer_intakePos2, spindexer_intakePos3};
public int counter = 0;
// private double getTimeSeconds ()
// {
// return (double) System.currentTimeMillis()/1000.0;
// }
// public double getPos() {
// robot.spin1Pos.getVoltage();
// robot.spin1Pos.getMaxVoltage();
// return (robot.spin1Pos.getVoltage()/robot.spin1Pos.getMaxVoltage());
// }
// public void manageSpindexer() {
//
// }
public void resetBallPosition (int pos) {
ballPositions[pos].isEmpty = true;
ballPositions[pos].foundEmpty = 0;
ballPositions[pos].ballColor = BallColor.UNKNOWN;
}
public void resetSpindexer () {
for (int i = 0; i < 3; i++) {
resetBallPosition(i);
}
currentIntakeState = IntakeState.UNKNOWN_START;
}
// Detects if a ball is found and what color.
// Returns true is there was a new ball found in Position 1
// FIXIT: Reduce number of times that we read the color sensors for loop times.
public boolean detectBalls(boolean detectRearColor, boolean detectFrontColor) {
boolean newPos1Detection = false;
int spindexerBallPos = 0;
// Read Distances
distanceRearCenter = robot.color1.getDistance(DistanceUnit.MM);
distanceFrontDriver = robot.color2.getDistance(DistanceUnit.MM);
distanceFrontPassenger = robot.color3.getDistance(DistanceUnit.MM);
// Position 1
if (distanceRearCenter < 43) {
// Mark Ball Found
newPos1Detection = true;
if (detectRearColor) {
// Detect which color
double green = robot.color1.getNormalizedColors().green;
double red = robot.color1.getNormalizedColors().red;
double blue = robot.color1.getNormalizedColors().blue;
double gP = green / (green + red + blue);
// FIXIT - Add filtering to improve accuracy.
if (gP >= 0.4) {
ballPositions[commandedIntakePosition].ballColor = BallColor.PURPLE; // purple
} else {
ballPositions[commandedIntakePosition].ballColor = BallColor.GREEN; // purple
}
}
}
// Position 2
// Find which ball position this is in the spindexer
spindexerBallPos = RotatedBallPositions[commandedIntakePosition][RotatedBallPositionNames.FRONTDRIVER.ordinal()];
if (distanceFrontDriver < 60) {
// reset FoundEmpty because looking for 3 in a row before reset
ballPositions[spindexerBallPos].foundEmpty = 0;
if (detectFrontColor) {
double green = robot.color2.getNormalizedColors().green;
double red = robot.color2.getNormalizedColors().red;
double blue = robot.color2.getNormalizedColors().blue;
double gP = green / (green + red + blue);
if (gP >= 0.4) {
ballPositions[spindexerBallPos].ballColor = BallColor.PURPLE; // purple
} else {
ballPositions[spindexerBallPos].ballColor = BallColor.GREEN; // purple
}
}
} else {
if (!ballPositions[spindexerBallPos].isEmpty) {
if (ballPositions[spindexerBallPos].foundEmpty > 3) {
resetBallPosition(spindexerBallPos);
}
ballPositions[spindexerBallPos].foundEmpty++;
}
}
// Position 3
spindexerBallPos = RotatedBallPositions[commandedIntakePosition][RotatedBallPositionNames.FRONTPASSENGER.ordinal()];
if (distanceFrontPassenger < 33) {
// reset FoundEmpty because looking for 3 in a row before reset
ballPositions[spindexerBallPos].foundEmpty = 0;
if (detectFrontColor) {
double green = robot.color3.getNormalizedColors().green;
double red = robot.color3.getNormalizedColors().red;
double blue = robot.color3.getNormalizedColors().blue;
double gP = green / (green + red + blue);
if (gP >= 0.4) {
ballPositions[spindexerBallPos].ballColor = BallColor.PURPLE; // purple
} else {
ballPositions[spindexerBallPos].ballColor = BallColor.GREEN; // purple
}
}
} else {
if (!ballPositions[spindexerBallPos].isEmpty) {
if (ballPositions[spindexerBallPos].foundEmpty > 3) {
resetBallPosition(spindexerBallPos);
}
ballPositions[spindexerBallPos].foundEmpty++;
}
}
// TELE.addData("Velocity", velo);
// TELE.addLine("Detecting");
// TELE.addData("Distance 1", s1D);
// TELE.addData("Distance 2", s2D);
// TELE.addData("Distance 3", s3D);
// TELE.addData("B1", b1);
// TELE.addData("B2", b2);
// TELE.addData("B3", b3);
// TELE.update();
return newPos1Detection;
}
public void moveSpindexerToPos(double pos) {
spinCurrentPos = servos.getSpinPos();
double spindexPID = spinPID.calculate(spinCurrentPos, pos);
robot.spin1.setPower(spindexPID);
robot.spin2.setPower(-spindexPID);
}
public void stopSpindexer() {
robot.spin1.setPower(0);
robot.spin2.setPower(0);
}
public boolean isFull () {
return (!ballPositions[0].isEmpty && !ballPositions[1].isEmpty && !ballPositions[2].isEmpty);
}
public boolean processIntake() {
switch (currentIntakeState) {
case UNKNOWN_START:
// For now just set position ONE if UNKNOWN
commandedIntakePosition = 0;
servos.setSpinPos(intakePositions[0]);
currentIntakeState = Spindexer.IntakeState.UNKNOWN_MOVE;
break;
case UNKNOWN_MOVE:
// Stopping when we get to the new position
if (servos.spinEqual(intakePositions[commandedIntakePosition])) {
currentIntakeState = Spindexer.IntakeState.UNKNOWN_DETECT;
stopSpindexer();
detectBalls(true, true);
unknownColorDetect = 0;
} else {
// Keep moving the spindexer
moveSpindexerToPos(intakePositions[commandedIntakePosition]);
}
break;
case UNKNOWN_DETECT:
if (unknownColorDetect >5) {
currentIntakeState = Spindexer.IntakeState.FINDNEXT;
} else {
detectBalls(true, true);
unknownColorDetect++;
}
break;
case INTAKE:
// Ready for intake and Detecting a New Ball
if (detectBalls(true, false)) {
ballPositions[commandedIntakePosition].isEmpty = false;
currentIntakeState = Spindexer.IntakeState.FINDNEXT;
} else {
// Maintain Position
moveSpindexerToPos(intakePositions[commandedIntakePosition]);
}
break;
case FINDNEXT:
// Find Next Open Position and start movement
double currentSpindexerPos = servos.getSpinPos();
double commandedtravelDistance = 2.0;
double proposedTravelDistance = Math.abs(intakePositions[0] - currentSpindexerPos);
if (ballPositions[0].isEmpty && (proposedTravelDistance < commandedtravelDistance)) {
// Position 1
commandedIntakePosition = 0;
servos.setSpinPos(intakePositions[commandedIntakePosition]);
currentIntakeState = Spindexer.IntakeState.MOVING;
commandedtravelDistance = proposedTravelDistance;
}
proposedTravelDistance = Math.abs(intakePositions[1] - currentSpindexerPos);
if (ballPositions[1].isEmpty && (proposedTravelDistance < commandedtravelDistance)) {
// Position 2
commandedIntakePosition = 1;
servos.setSpinPos(intakePositions[commandedIntakePosition]);
currentIntakeState = Spindexer.IntakeState.MOVING;
commandedtravelDistance = proposedTravelDistance;
}
proposedTravelDistance = Math.abs(intakePositions[2] - currentSpindexerPos);
if (ballPositions[2].isEmpty && (proposedTravelDistance < commandedtravelDistance)) {
// Position 3
commandedIntakePosition = 2;
servos.setSpinPos(intakePositions[commandedIntakePosition]);
currentIntakeState = Spindexer.IntakeState.MOVING;
commandedtravelDistance = proposedTravelDistance;
}
if (currentIntakeState != Spindexer.IntakeState.MOVING) {
// Full
currentIntakeState = Spindexer.IntakeState.FULL;
}
moveSpindexerToPos(intakePositions[commandedIntakePosition]);
break;
case MOVING:
// Stopping when we get to the new position
if (servos.spinEqual(intakePositions[commandedIntakePosition])) {
currentIntakeState = Spindexer.IntakeState.INTAKE;
stopSpindexer();
detectBalls(false, false);
} else {
// Keep moving the spindexer
moveSpindexerToPos(intakePositions[commandedIntakePosition]);
}
break;
case FULL:
// Double Check Colors
detectBalls(false, false); // Minimize hardware calls
if (ballPositions[0].isEmpty || ballPositions[1].isEmpty || ballPositions[2].isEmpty) {
// Error handling found an empty spot, get it ready for a ball
currentIntakeState = Spindexer.IntakeState.FINDNEXT;
}
// Maintain Position
moveSpindexerToPos(intakePositions[commandedIntakePosition]);
break;
case SHOOTNEXT:
// Find Next Open Position and start movement
if (!ballPositions[0].isEmpty) {
// Position 1
commandedIntakePosition = 0;
servos.setSpinPos(outakePositions[commandedIntakePosition]);
currentIntakeState = Spindexer.IntakeState.SHOOTMOVING;
} else if (ballPositions[1].isEmpty) { // Possible error: should it be !ballPosition[1].isEmpty?
// Position 2
commandedIntakePosition = 1;
servos.setSpinPos(outakePositions[commandedIntakePosition]);
currentIntakeState = Spindexer.IntakeState.SHOOTMOVING;
} else if (ballPositions[2].isEmpty) { // Possible error: should it be !ballPosition[2].isEmpty?
// Position 3
commandedIntakePosition = 2;
servos.setSpinPos(intakePositions[commandedIntakePosition]); // Possible error: should it be using "outakePositions" instead of "intakePositions"
currentIntakeState = Spindexer.IntakeState.SHOOTMOVING;
} else {
// Empty return to intake state
currentIntakeState = IntakeState.FINDNEXT;
}
moveSpindexerToPos(intakePositions[commandedIntakePosition]); // Possible error: should it be using "outakePositions" instead of "intakePositions"
break;
case SHOOTMOVING:
// Stopping when we get to the new position
if (servos.spinEqual(outakePositions[commandedIntakePosition])) {
currentIntakeState = Spindexer.IntakeState.SHOOTWAIT;
ballPositions[commandedIntakePosition].isEmpty = true;
// Advance to next full position and wait
// commandedIntakePosition++;
// if (commandedIntakePosition > 2) {
// commandedIntakePosition = 0;
// }
// // Continue moving to next position
// servos.setSpinPos(intakePositions[commandedIntakePosition]);
// currentIntakeState = Spindexer.IntakeState.MOVING;
} else {
// Keep moving the spindexer
moveSpindexerToPos(intakePositions[commandedIntakePosition]); // Possible error: should it be using "outakePositions" instead of "intakePositions"
}
break;
case SHOOTWAIT:
// Stopping when we get to the new position
if (servos.spinEqual(intakePositions[commandedIntakePosition])) {
currentIntakeState = Spindexer.IntakeState.INTAKE;
stopSpindexer();
detectBalls(true, false);
} else {
// Keep moving the spindexer
moveSpindexerToPos(intakePositions[commandedIntakePosition]);
}
break;
default:
// Statements to execute if no case matches
}
//TELE.addData("commandedIntakePosition", commandedIntakePosition);
//TELE.update();
// Signal a successful intake
return false;
}
public void update()
{
}
}

View File

@@ -0,0 +1,141 @@
package org.firstinspires.ftc.teamcode.utils;
import android.provider.Settings;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.HardwareMap;
public class Targeting {
MultipleTelemetry TELE;
double cancelOffsetX = 7.071067811;
double cancelOffsetY = 7.071067811;
double unitConversionFactor = 0.95;
int tileSize = 24; //inches
public double robotInchesX, robotInchesY = 0.0;
public int robotGridX, robotGridY = 0;
public static class Settings {
public double flywheelRPM = 0.0;
public double hoodAngle = 0.0;
public Settings (double flywheelRPM, double hoodAngle) {
this.flywheelRPM = flywheelRPM;
this.hoodAngle = hoodAngle;
}
}
// Known settings discovered using shooter test.
// Keep the fidelity at 1 floor tile for now but we could also half it if more
// accuracy is needed.
public static final Settings[][] KNOWNTARGETING;
static {
KNOWNTARGETING = new Settings[6][6];
// ROW 0 - Closet to the goals
KNOWNTARGETING[0][0] = new Settings (3000.0, 0.25);
KNOWNTARGETING[0][1] = new Settings (3001.0, 0.25);
KNOWNTARGETING[0][2] = new Settings (3002.0, 0.25);
KNOWNTARGETING[0][3] = new Settings (3302.0, 0.2);
KNOWNTARGETING[0][4] = new Settings (3503.0, 0.15);
KNOWNTARGETING[0][5] = new Settings (3505.0, 0.15);
// ROW 1
KNOWNTARGETING[1][0] = new Settings (3010.0, 0.25);
KNOWNTARGETING[1][1] = new Settings (3011.0, 0.25);
KNOWNTARGETING[1][2] = new Settings (3012.0, 0.25);
KNOWNTARGETING[1][3] = new Settings (3313.0, 0.15);
KNOWNTARGETING[1][4] = new Settings (3514.0, 0.15);
KNOWNTARGETING[1][5] = new Settings (3515.0, 0.15);
// ROW 2
KNOWNTARGETING[2][0] = new Settings (3020.0, 0.1);
KNOWNTARGETING[2][1] = new Settings (3000.0, 0.25);
KNOWNTARGETING[2][2] = new Settings (3000.0, 0.15);
KNOWNTARGETING[2][3] = new Settings (3000.0, 0.15);
KNOWNTARGETING[2][4] = new Settings (3524.0, 0.15);
KNOWNTARGETING[2][5] = new Settings (3525.0, 0.15);
// ROW 3
KNOWNTARGETING[3][0] = new Settings (3030.0, 0.15);
KNOWNTARGETING[3][1] = new Settings (3031.0, 0.15);
KNOWNTARGETING[3][2] = new Settings (3000.0, 0.15);
KNOWNTARGETING[3][3] = new Settings (3000.0, 0.15);
KNOWNTARGETING[3][4] = new Settings (3000.0, 0.03);
KNOWNTARGETING[3][5] = new Settings (3535.0, 0.1);
// ROW 4
KNOWNTARGETING[4][0] = new Settings (4540.0, 0.1);
KNOWNTARGETING[4][1] = new Settings (4541.0, 0.1);
KNOWNTARGETING[4][2] = new Settings (4542.0, 0.1);
KNOWNTARGETING[4][3] = new Settings (4543.0, 0.1);
KNOWNTARGETING[4][4] = new Settings (4544.0, 0.1);
KNOWNTARGETING[4][5] = new Settings (4545.0, 0.1);
// ROW 1
KNOWNTARGETING[5][0] = new Settings (4550.0, 0.1);
KNOWNTARGETING[5][1] = new Settings (4551.0, 0.1);
KNOWNTARGETING[5][2] = new Settings (4552.0, 0.1);
KNOWNTARGETING[5][3] = new Settings (4553.0, 0.1);
KNOWNTARGETING[5][4] = new Settings (4554.0, 0.1);
KNOWNTARGETING[5][5] = new Settings (4555.0, 0.1);
}
public Targeting()
{
}
public Settings calculateSettings(double robotX, double robotY, double robotHeading, double robotVelocity, boolean interpolate) {
Settings recommendedSettings = new Settings(0.0, 0.0);
double cos45 = Math.cos(Math.toRadians(-45));
double sin45 = Math.sin(Math.toRadians(-45));
double rotatedY = (robotX - 40.0) * sin45 + (robotY + 7.0) * cos45;
double rotatedX = (robotX - 40.0) * cos45 - (robotY + 7.0) * sin45;
// Convert robot coordinates to inches
robotInchesX = rotatedX * unitConversionFactor;
robotInchesY = rotatedY * unitConversionFactor;
// Find approximate location in the grid
int gridX = Math.abs(Math.floorDiv((int) robotInchesX, tileSize) + 1);
int gridY = Math.abs(Math.floorDiv((int) robotInchesY, tileSize));
//clamp
robotGridX = Math.max(0, Math.min(gridX, KNOWNTARGETING[0].length - 1));
robotGridY = Math.max(0, Math.min(gridY, KNOWNTARGETING.length - 1));
// basic search
if(!interpolate) {
if ((robotGridY < 6) && (robotGridX <6)) {
recommendedSettings.flywheelRPM = KNOWNTARGETING[robotGridY][robotGridX].flywheelRPM;
recommendedSettings.hoodAngle = KNOWNTARGETING[robotGridY][robotGridX].hoodAngle;
}
return recommendedSettings;
} else {
// bilinear interpolation
int x0 = robotGridX;
int x1 = Math.min(x0 + 1, KNOWNTARGETING[0].length - 1);
int y0 = gridY;
int y1 = Math.min(y0 + 1, KNOWNTARGETING.length - 1);
double x = (robotInchesX - (x0 * tileSize)) / tileSize;
double y = (robotInchesY - (y0 * tileSize)) / tileSize;
double rpm00 = KNOWNTARGETING[y0][x0].flywheelRPM;
double rpm10 = KNOWNTARGETING[y0][x1].flywheelRPM;
double rpm01 = KNOWNTARGETING[y1][x0].flywheelRPM;
double rpm11 = KNOWNTARGETING[y1][x1].flywheelRPM;
double angle00 = KNOWNTARGETING[y0][x0].hoodAngle;
double angle10 = KNOWNTARGETING[y0][x1].hoodAngle;
double angle01 = KNOWNTARGETING[y1][x0].hoodAngle;
double angle11 = KNOWNTARGETING[y1][x1].hoodAngle;
recommendedSettings.flywheelRPM = (1 - x) * (1 - y) * rpm00 + x * (1 - y) * rpm10 + (1 - x) * y * rpm01 + x * y * rpm11;
recommendedSettings.hoodAngle = (1 - x) * (1 - y) * angle00 + x * (1 - y) * angle10 + (1 - x) * y * angle01 + x * y * angle11;
return recommendedSettings;
}
}
}

View File

@@ -0,0 +1,147 @@
package org.firstinspires.ftc.teamcode.utils;
import static org.firstinspires.ftc.teamcode.constants.Color.redAlliance;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.acmerobotics.roadrunner.Pose2d;
import org.firstinspires.ftc.vision.apriltag.AprilTagDetection;
@Config
public class Turret {
public static double turretTolerance = 0.02;
public static double turrPosScalar = 1.009;
public static double turret180Range = 0.4;
public static double turrDefault = 0.4;
public static double cameraBearingEqual = 1;
public static double errorLearningRate = 0.15;
public static double turrMin = 0.2;
public static double turrMax = 0.8;
public static double deltaAngleThreshold = 0.02;
public static double angleMultiplier = 0.0;
Robot robot;
MultipleTelemetry TELE;
AprilTagWebcam webcam;
private int obeliskID = 0;
private double turrPos = 0.0;
private double offset = 0.0;
private double bearing = 0.0;
public Turret(Robot rob, MultipleTelemetry tele, AprilTagWebcam cam) {
this.TELE = tele;
this.robot = rob;
this.webcam = cam;
}
public double getTurrPos() {
return turrPosScalar * (robot.turr1Pos.getVoltage() / 3.3);
}
public void manualSetTurret(double pos){
robot.turr1.setPosition(pos);
robot.turr2.setPosition(1-pos);
}
public boolean turretEqual(double pos) {
return Math.abs(pos - this.getTurrPos()) < turretTolerance;
}
public double getBearing() {
if (redAlliance) {
AprilTagDetection d24 = webcam.getTagById(24);
if (d24 != null) {
bearing = d24.ftcPose.bearing;
return bearing;
} else {
return 1000.0;
}
} else {
AprilTagDetection d20 = webcam.getTagById(20);
if (d20 != null) {
bearing = d20.ftcPose.bearing;
return bearing;
} else {
return 1000.0;
}
}
}
public int detectObelisk() {
AprilTagDetection id21 = webcam.getTagById(21);
AprilTagDetection id22 = webcam.getTagById(22);
AprilTagDetection id23 = webcam.getTagById(23);
if (id21 != null) {
obeliskID = 21;
} else if (id22 != null) {
obeliskID = 22;
} else if (id23 != null) {
obeliskID = 23;
}
return obeliskID;
}
public int getObeliskID() {
return obeliskID;
}
/*
Param @deltaPos = Pose2d when subtracting robot x, y, heading from goal x, y, heading
*/
public void trackGoal(Pose2d deltaPos) {
/* ---------------- FIELD → TURRET GEOMETRY ---------------- */
// Angle from robot to goal in robot frame
double desiredTurretAngleDeg = Math.toDegrees(
Math.atan2(deltaPos.position.y, deltaPos.position.x)
);
// Robot heading (field → robot)
double robotHeadingDeg = Math.toDegrees(deltaPos.heading.toDouble());
// Turret angle needed relative to robot
double turretAngleDeg = desiredTurretAngleDeg - robotHeadingDeg;
turretAngleDeg = -turretAngleDeg;
// Normalize to [-180, 180]
while (turretAngleDeg > 180) turretAngleDeg -= 360;
while (turretAngleDeg < -180) turretAngleDeg += 360;
/* ---------------- APRILTAG CORRECTION ---------------- */
//
double tagBearingDeg = getBearing(); // + = target is to the left
if (tagBearingDeg != 1000.0 && Math.abs(tagBearingDeg) > cameraBearingEqual) {
// Slowly learn turret offset (persistent calibration)
offset -= tagBearingDeg * errorLearningRate;
}
turretAngleDeg += offset;
/* ---------------- ANGLE → SERVO ---------------- */
double turretPos = turrDefault + (turretAngleDeg * (turret180Range * 2.0) / 360);
// Clamp to servo range
turretPos = Math.max(turrMin, Math.min(turretPos, turrMax));
robot.turr1.setPosition(turretPos);
robot.turr2.setPosition(1.0 - turretPos);
/* ---------------- TELEMETRY ---------------- */
TELE.addData("Turret Angle", turretAngleDeg);
TELE.addData("Bearing", tagBearingDeg);
TELE.addData("Offset", offset);
}
}