8 Commits

12 changed files with 453 additions and 117 deletions

View File

@@ -710,7 +710,7 @@ public class ProtoAutoClose_V3 extends LinearOpMode {
bearing = result.getTx();
}
}
double turretPos = robot.turr1Pos.getCurrentPosition() - (bearing / 1300);
double turretPos = (bearing / 1300);
robot.turr1.setPosition(turretPos);
robot.turr2.setPosition(1 - turretPos);
}

View File

@@ -42,4 +42,8 @@ public class ServoPositions {
public static double turret_detectBlueClose = 0.6;
public static double turrDefault = 0.4;
public static double turrMin = 0.2;
public static double turrMax = 0.8;
}

View File

@@ -33,6 +33,7 @@ import org.firstinspires.ftc.teamcode.utils.Flywheel;
import org.firstinspires.ftc.teamcode.utils.Robot;
import org.firstinspires.ftc.teamcode.utils.Servos;
import org.firstinspires.ftc.teamcode.utils.Spindexer;
import org.firstinspires.ftc.teamcode.utils.Targeting;
import java.util.ArrayList;
import java.util.List;
@@ -53,6 +54,8 @@ public class TeleopV3 extends LinearOpMode {
public static boolean manualTurret = true;
public double vel = 3000;
public boolean autoVel = true;
public boolean targetingVel = true;
public boolean targetingHood = true;
public double manualOffset = 0.0;
public boolean autoHood = true;
public boolean green1 = false;
@@ -72,6 +75,8 @@ public class TeleopV3 extends LinearOpMode {
Flywheel flywheel;
MecanumDrive drive;
Spindexer spindexer;
Targeting targeting;
Targeting.Settings targetingSettings;
double autoHoodOffset = 0.0;
int shooterTicker = 0;
@@ -146,18 +151,20 @@ public class TeleopV3 extends LinearOpMode {
flywheel = new Flywheel(hardwareMap);
drive = new MecanumDrive(hardwareMap, teleStart);
spindexer = new Spindexer(hardwareMap);
targeting = new Targeting();
targetingSettings = new Targeting.Settings(0.0,0.0);
PIDFController tController = new PIDFController(tp, ti, td, tf);
tController.setTolerance(0.001);
//
// if (redAlliance) {
// robot.limelight.pipelineSwitch(3);
// } else {
// robot.limelight.pipelineSwitch(2);
// }
if (redAlliance) {
robot.limelight.pipelineSwitch(3);
} else {
robot.limelight.pipelineSwitch(2);
}
robot.limelight.start();
// robot.limelight.start();
waitForStart();
if (isStopRequested()) return;
@@ -402,13 +409,14 @@ public class TeleopV3 extends LinearOpMode {
pos = 0.83;
}
//SHOOTER:
flywheel.manageFlywheel(vel);
targetingSettings = targeting.calculateSettings
(robotX,robotY,robotHeading,0.0);
//VELOCITY AUTOMATIC
if (autoVel) {
if (targetingVel) {
vel = targetingSettings.flywheelRPM;
} else if (autoVel) {
vel = velPrediction(distanceToGoal);
} else {
vel = manualVel;
@@ -430,32 +438,35 @@ public class TeleopV3 extends LinearOpMode {
manualVel = 3100;
}
//SHOOTER:
flywheel.manageFlywheel(vel);
//TODO: test the camera teleop code
TELE.addData("posS2", pos);
if (y < 0.3 && y > -0.3 && x < 0.3 && x > -0.3 && rx < 0.3 && rx > -0.3) { //not moving
double bearing;
LLResult result = robot.limelight.getLatestResult();
if (result != null) {
if (result.isValid()) {
bearing = result.getTx() * bMult;
double bearingCorrection = bearing / bDiv;
error += bearingCorrection;
camTicker++;
TELE.addData("tx", bearingCorrection);
TELE.addData("ty", result.getTy());
}
}
} else {
camTicker = 0;
overrideTurr = false;
}
// if (y < 0.3 && y > -0.3 && x < 0.3 && x > -0.3 && rx < 0.3 && rx > -0.3) { //not moving
// double bearing;
//
// LLResult result = robot.light.getLatestResult();
// if (result != null) {
// if (result.isValid()) {
// bearing = result.getTx() * bMult;
//
// double bearingCorrection = bearing / bDiv;
//
// error += bearingCorrection;
//
// camTicker++;
// TELE.addData("tx", bearingCorrection);
// TELE.addData("ty", result.getTy());
// }
// }
//
// } else {
// camTicker = 0;
// overrideTurr = false;
// }
if (!overrideTurr) {
turretPos = pos;
@@ -480,7 +491,9 @@ public class TeleopV3 extends LinearOpMode {
//HOOD:
if (autoHood) {
if (targetingHood) {
robot.hood.setPosition(targetingSettings.hoodAngle);
} else if (autoHood) {
robot.hood.setPosition(0.15 + hoodOffset);
} else {
robot.hood.setPosition(hoodDefaultPos + hoodOffset);
@@ -845,16 +858,27 @@ public class TeleopV3 extends LinearOpMode {
TELE.addData("shootOrder", shootOrder);
TELE.addData("oddColor", oddBallColor);
// Spindexer Debug
TELE.addData("spinEqual", servo.spinEqual(spindexer_intakePos1));
TELE.addData("spinCommmandedPos", spindexer.commandedIntakePosition);
TELE.addData("spinIntakeState", spindexer.currentIntakeState);
TELE.addData("spinTestCounter", spindexer.counter);
TELE.addData("autoSpintake", autoSpintake);
TELE.addData("distanceRearCenter", spindexer.distanceRearCenter);
TELE.addData("distanceFrontDriver", spindexer.distanceFrontDriver);
TELE.addData("distanceFrontPassenger", spindexer.distanceFrontPassenger);
//TELE.addData("distanceRearCenter", spindexer.distanceRearCenter);
//TELE.addData("distanceFrontDriver", spindexer.distanceFrontDriver);
//TELE.addData("distanceFrontPassenger", spindexer.distanceFrontPassenger);
TELE.addData("shootall commanded", shootAll);
// Targeting Debug
TELE.addData("robotX", robotX);
TELE.addData( "robotY", robotY);
TELE.addData("robotInchesX", targeting.robotInchesX);
TELE.addData( "robotInchesY", targeting.robotInchesY);
TELE.addData("Targeting GridX", targeting.robotGridX);
TELE.addData("Targeting GridY", targeting.robotGridY);
TELE.addData("Targeting FlyWheel", targetingSettings.flywheelRPM);
TELE.addData("Targeting HoodAngle", targetingSettings.hoodAngle);
TELE.addData("timeSinceStamp", getRuntime() - shootStamp);
TELE.update();
ticker++;

View File

@@ -52,7 +52,6 @@ public class PIDServoTest extends LinearOpMode {
}
telemetry.addData("pos", pos);
telemetry.addData("Turret Voltage", robot.turr1Pos.getCurrentPosition());
telemetry.addData("Spindex Voltage", robot.spin1Pos.getVoltage());
telemetry.addData("target", target);
telemetry.addData("Mode", mode);

View File

@@ -0,0 +1,42 @@
package org.firstinspires.ftc.teamcode.tests;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.acmerobotics.roadrunner.Pose2d;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import org.firstinspires.ftc.teamcode.libs.RR.MecanumDrive;
import org.firstinspires.ftc.teamcode.utils.AprilTagWebcam;
import org.firstinspires.ftc.teamcode.utils.Robot;
import org.firstinspires.ftc.teamcode.utils.Turret;
import org.firstinspires.ftc.vision.apriltag.AprilTagDetection;
@Autonomous
@Config
public class TurretTest extends LinearOpMode {
@Override
public void runOpMode() throws InterruptedException {
Robot robot = new Robot(hardwareMap);
MultipleTelemetry TELE = new MultipleTelemetry(
telemetry, FtcDashboard.getInstance().getTelemetry()
);
AprilTagWebcam webcam = new AprilTagWebcam();
webcam.init(robot, TELE);
Turret turret = new Turret(robot, TELE, webcam);
waitForStart();
MecanumDrive drive = new MecanumDrive(hardwareMap, new Pose2d(10, 0,0));
while(opModeIsActive()){
drive.updatePoseEstimate();
turret.trackGoal(drive.localizer.getPose());
}
}
}

View File

@@ -1,22 +1,13 @@
package org.firstinspires.ftc.teamcode.utils;
import static org.firstinspires.ftc.teamcode.constants.ShooterVars.kP;
import static org.firstinspires.ftc.teamcode.constants.ShooterVars.maxStep;
import com.arcrobotics.ftclib.controller.PIDFController;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.hardware.PIDFCoefficients;
public class Flywheel {
Robot robot;
MultipleTelemetry TELE;
double initPos = 0.0;
double stamp = 0.0;
double stamp1 = 0.0;
double ticker = 0.0;
double currentPos = 0.0;
public PIDFCoefficients shooterPIDF1, shooterPIDF2;
double velo = 0.0;
double velo1 = 0.0;
double velo2 = 0.0;
@@ -25,6 +16,10 @@ public class Flywheel {
boolean steady = false;
public Flywheel (HardwareMap hardwareMap) {
robot = new Robot(hardwareMap);
shooterPIDF1 = new PIDFCoefficients
(robot.shooterPIDF_P, robot.shooterPIDF_I, robot.shooterPIDF_D, robot.shooterPIDF_F);
shooterPIDF2 = new PIDFCoefficients
(robot.shooterPIDF_P, robot.shooterPIDF_I, robot.shooterPIDF_D, robot.shooterPIDF_F);
}
public double getVelo () {
@@ -48,10 +43,6 @@ public class Flywheel {
robot.shooterPIDF.d = d;
robot.shooterPIDF.f = f;
}
private double getTimeSeconds ()
{
return (double) System.currentTimeMillis()/1000.0;
}
// Convert from RPM to Ticks per Second
private double RPM_to_TPS (double RPM) { return (RPM*28.0)/60.0;}
@@ -62,19 +53,20 @@ public class Flywheel {
public double manageFlywheel(double commandedVelocity) {
targetVelocity = commandedVelocity;
// Turn PIDF for Target Velocities
// Add code here to set PIDF based on desired RPM
//robot.shooterPIDF.p = P;
//robot.shooterPIDF.i = I;
//robot.shooterPIDF.d = D;
//robot.shooterPIDF.f = F;
robot.shooter1.setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, robot.shooterPIDF);
robot.shooter2.setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, robot.shooterPIDF);
robot.shooter1.setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, shooterPIDF1);
robot.shooter2.setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, shooterPIDF2);
robot.shooter1.setVelocity(RPM_to_TPS(targetVelocity));
robot.shooter2.setVelocity(RPM_to_TPS(targetVelocity));
// Record Current Velocity
velo1 = TPS_to_RPM(robot.shooter1.getVelocity());
velo2 = TPS_to_RPM(robot.shooter1.getVelocity()); // Possible error: should it be shooter2 not shooter1?
velo2 = TPS_to_RPM(robot.shooter2.getVelocity());
velo = Math.max(velo1,velo2);
// really should be a running average of the last 5

View File

@@ -71,7 +71,6 @@ public class PositionalServoProgrammer extends LinearOpMode {
TELE.addData("spindexer voltage 2", robot.spin2Pos.getVoltage());
TELE.addData("hood pos", robot.hood.getPosition());
TELE.addData("transferServo voltage", robot.transferServoPos.getVoltage());
TELE.addData("turret voltage", robot.turr1Pos.getCurrentPosition());
TELE.addData("spindexer pow", robot.spin1.getPower());
TELE.update();
}

View File

@@ -1,5 +1,6 @@
package org.firstinspires.ftc.teamcode.utils;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.hardware.limelightvision.Limelight3A;
import com.qualcomm.hardware.rev.RevColorSensorV3;
import com.qualcomm.robotcore.hardware.AnalogInput;
@@ -14,10 +15,13 @@ import com.qualcomm.robotcore.hardware.Servo;
import org.firstinspires.ftc.robotcore.external.hardware.camera.WebcamName;
import org.firstinspires.ftc.vision.apriltag.AprilTagProcessor;
@Config
public class Robot {
//Initialize Public Components
public static boolean usingLimelight = false;
public static boolean usingCamera = true;
public DcMotorEx frontLeft;
public DcMotorEx frontRight;
public DcMotorEx backLeft;
@@ -29,7 +33,6 @@ public class Robot {
public double shooterPIDF_I = 0.6;
public double shooterPIDF_D = 5.0;
public double shooterPIDF_F = 10.0;
public double[] shooterPIDF_StepSizes = {10.0, 1.0, 0.001, 0.0001};
public DcMotorEx shooter1;
public DcMotorEx shooter2;
@@ -41,7 +44,7 @@ public class Robot {
public CRServo spin2;
public AnalogInput spin1Pos;
public AnalogInput spin2Pos;
public DcMotorEx turr1Pos;
public AnalogInput turr1Pos;
public AnalogInput transferServoPos;
public AprilTagProcessor aprilTagProcessor;
public WebcamName webcam;
@@ -50,10 +53,6 @@ public class Robot {
public RevColorSensorV3 color3;
public Limelight3A limelight;
public static boolean usingLimelight = true;
public static boolean usingCamera = true;
public Robot(HardwareMap hardwareMap) {
//Define components w/ hardware map
@@ -89,7 +88,7 @@ public class Robot {
turr2 = hardwareMap.get(Servo.class, "t2");
turr1Pos = intake; // Encoder of turret plugged in intake port
turr1Pos = hardwareMap.get(AnalogInput.class, "t1Pos"); // Encoder of turret plugged in intake port
//TODO: check spindexer configuration (both servo and analog input) - check comments in PositionalServoProgrammer
spin1 = hardwareMap.get(CRServo.class, "spin1");

View File

@@ -44,17 +44,15 @@ public class Servos {
}
public double getTurrPos() {
return (double) ((double) robot.turr1Pos.getCurrentPosition() / 1024.0) * ((double) 44.0 / (double) 77.0);
return 1.0;
}
public double setTurrPos(double pos) {
turretPID.setPIDF(turrP, turrI, turrD, turrF);
return spinPID.calculate(this.getTurrPos(), pos);
return 1.0;
}
public boolean turretEqual(double pos) {
return Math.abs(pos - this.getTurrPos()) < 0.01;
return true;
}
}

View File

@@ -52,7 +52,9 @@ public class Spindexer {
}
enum IntakeState {
UNKNOWN,
UNKNOWN_START,
UNKNOWN_MOVE,
UNKNOWN_DETECT,
INTAKE,
FINDNEXT,
MOVING,
@@ -62,8 +64,8 @@ public class Spindexer {
SHOOTWAIT,
};
public IntakeState currentIntakeState = IntakeState.UNKNOWN;
public IntakeState currentIntakeState = IntakeState.UNKNOWN_START;
public int unknownColorDetect = 0;
enum BallColor {
UNKNOWN,
GREEN,
@@ -131,13 +133,13 @@ public class Spindexer {
for (int i = 0; i < 3; i++) {
resetBallPosition(i);
}
currentIntakeState = IntakeState.UNKNOWN;
currentIntakeState = IntakeState.UNKNOWN_START;
}
// Detects if a ball is found and what color.
// Returns true is there was a new ball found in Position 1
// FIXIT: Reduce number of times that we read the color sensors for loop times.
public boolean detectBalls() {
public boolean detectBalls(boolean detectRearColor, boolean detectFrontColor) {
boolean newPos1Detection = false;
int spindexerBallPos = 0;
@@ -153,6 +155,7 @@ public class Spindexer {
// Mark Ball Found
newPos1Detection = true;
if (detectRearColor) {
// Detect which color
double green = robot.color1.getNormalizedColors().green;
double red = robot.color1.getNormalizedColors().red;
@@ -167,24 +170,26 @@ public class Spindexer {
ballPositions[commandedIntakePosition].ballColor = BallColor.GREEN; // purple
}
}
}
// Position 2
// Find which ball position this is in the spindexer
spindexerBallPos = RotatedBallPositions[commandedIntakePosition][RotatedBallPositionNames.FRONTDRIVER.ordinal()];
if (distanceFrontDriver < 60) {
// reset FoundEmpty because looking for 3 in a row before reset
ballPositions[spindexerBallPos].foundEmpty = 0;
// FIXIT: Comment out for now due to loop time concerns
// double green = robot.color2.getNormalizedColors().green;
// double red = robot.color2.getNormalizedColors().red;
// double blue = robot.color2.getNormalizedColors().blue;
//
// double gP = green / (green + red + blue);
if (detectFrontColor) {
double green = robot.color2.getNormalizedColors().green;
double red = robot.color2.getNormalizedColors().red;
double blue = robot.color2.getNormalizedColors().blue;
// if (gP >= 0.4) {
// b2 = 2; // purple
// } else {
// b2 = 1; // green
// }
double gP = green / (green + red + blue);
if (gP >= 0.4) {
ballPositions[spindexerBallPos].ballColor = BallColor.PURPLE; // purple
} else {
ballPositions[spindexerBallPos].ballColor = BallColor.GREEN; // purple
}
}
} else {
if (!ballPositions[spindexerBallPos].isEmpty) {
if (ballPositions[spindexerBallPos].foundEmpty > 3) {
@@ -201,18 +206,19 @@ public class Spindexer {
// reset FoundEmpty because looking for 3 in a row before reset
ballPositions[spindexerBallPos].foundEmpty = 0;
// FIXIT: Comment out for now due to loop time concerns
// double green = robot.color3.getNormalizedColors().green;
// double red = robot.color3.getNormalizedColors().red;
// double blue = robot.color3.getNormalizedColors().blue;
if (detectFrontColor) {
double green = robot.color3.getNormalizedColors().green;
double red = robot.color3.getNormalizedColors().red;
double blue = robot.color3.getNormalizedColors().blue;
// double gP = green / (green + red + blue);
double gP = green / (green + red + blue);
// if (gP >= 0.4) {
// b3 = 2; // purple
// } else {
// b3 = 1; // green
// }
if (gP >= 0.4) {
ballPositions[spindexerBallPos].ballColor = BallColor.PURPLE; // purple
} else {
ballPositions[spindexerBallPos].ballColor = BallColor.GREEN; // purple
}
}
} else {
if (!ballPositions[spindexerBallPos].isEmpty) {
if (ballPositions[spindexerBallPos].foundEmpty > 3) {
@@ -255,15 +261,35 @@ public class Spindexer {
public boolean processIntake() {
switch (currentIntakeState) {
case UNKNOWN:
case UNKNOWN_START:
// For now just set position ONE if UNKNOWN
commandedIntakePosition = 0;
servos.setSpinPos(intakePositions[0]);
currentIntakeState = Spindexer.IntakeState.MOVING;
currentIntakeState = Spindexer.IntakeState.UNKNOWN_MOVE;
break;
case UNKNOWN_MOVE:
// Stopping when we get to the new position
if (servos.spinEqual(intakePositions[commandedIntakePosition])) {
currentIntakeState = Spindexer.IntakeState.UNKNOWN_DETECT;
stopSpindexer();
detectBalls(true, true);
unknownColorDetect = 0;
} else {
// Keep moving the spindexer
moveSpindexerToPos(intakePositions[commandedIntakePosition]);
}
break;
case UNKNOWN_DETECT:
if (unknownColorDetect >5) {
currentIntakeState = Spindexer.IntakeState.FINDNEXT;
} else {
detectBalls(true, true);
unknownColorDetect++;
}
break;
case INTAKE:
// Ready for intake and Detecting a New Ball
if (detectBalls()) {
if (detectBalls(true, false)) {
ballPositions[commandedIntakePosition].isEmpty = false;
currentIntakeState = Spindexer.IntakeState.FINDNEXT;
} else {
@@ -311,7 +337,7 @@ public class Spindexer {
if (servos.spinEqual(intakePositions[commandedIntakePosition])) {
currentIntakeState = Spindexer.IntakeState.INTAKE;
stopSpindexer();
detectBalls();
detectBalls(false, false);
} else {
// Keep moving the spindexer
moveSpindexerToPos(intakePositions[commandedIntakePosition]);
@@ -320,7 +346,7 @@ public class Spindexer {
case FULL:
// Double Check Colors
detectBalls();
detectBalls(false, false); // Minimize hardware calls
if (ballPositions[0].isEmpty || ballPositions[1].isEmpty || ballPositions[2].isEmpty) {
// Error handling found an empty spot, get it ready for a ball
currentIntakeState = Spindexer.IntakeState.FINDNEXT;
@@ -378,7 +404,7 @@ public class Spindexer {
if (servos.spinEqual(intakePositions[commandedIntakePosition])) {
currentIntakeState = Spindexer.IntakeState.INTAKE;
stopSpindexer();
detectBalls();
detectBalls(true, false);
} else {
// Keep moving the spindexer
moveSpindexerToPos(intakePositions[commandedIntakePosition]);

View File

@@ -0,0 +1,111 @@
package org.firstinspires.ftc.teamcode.utils;
import android.provider.Settings;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.HardwareMap;
public class Targeting {
MultipleTelemetry TELE;
double cancelOffsetX = 7.071067811;
double cancelOffsetY = 7.071067811;
double unitConversionFactor = 0.95;
int tileSize = 24; //inches
public double robotInchesX, robotInchesY = 0.0;
public int robotGridX, robotGridY = 0;
public static class Settings {
public double flywheelRPM = 0.0;
public double hoodAngle = 0.0;
public Settings (double flywheelRPM, double hoodAngle) {
this.flywheelRPM = flywheelRPM;
this.hoodAngle = hoodAngle;
}
}
// Known settings discovered using shooter test.
// Keep the fidelity at 1 floor tile for now but we could also half it if more
// accuracy is needed.
public static final Settings[][] KNOWNTARGETING;
static {
KNOWNTARGETING = new Settings[6][6];
// ROW 0 - Closet to the goals
KNOWNTARGETING[0][0] = new Settings (3000.0, 0.25);
KNOWNTARGETING[0][1] = new Settings (3001.0, 0.25);
KNOWNTARGETING[0][2] = new Settings (3002.0, 0.25);
KNOWNTARGETING[0][3] = new Settings (3302.0, 0.2);
KNOWNTARGETING[0][4] = new Settings (3503.0, 0.15);
KNOWNTARGETING[0][5] = new Settings (3505.0, 0.15);
// ROW 1
KNOWNTARGETING[1][0] = new Settings (3010.0, 0.25);
KNOWNTARGETING[1][1] = new Settings (3011.0, 0.25);
KNOWNTARGETING[1][2] = new Settings (3012.0, 0.25);
KNOWNTARGETING[1][3] = new Settings (3313.0, 0.15);
KNOWNTARGETING[1][4] = new Settings (3514.0, 0.15);
KNOWNTARGETING[1][5] = new Settings (3515.0, 0.15);
// ROW 2
KNOWNTARGETING[2][0] = new Settings (3020.0, 0.1);
KNOWNTARGETING[2][1] = new Settings (3000.0, 0.25);
KNOWNTARGETING[2][2] = new Settings (3000.0, 0.15);
KNOWNTARGETING[2][3] = new Settings (3000.0, 0.15);
KNOWNTARGETING[2][4] = new Settings (3524.0, 0.15);
KNOWNTARGETING[2][5] = new Settings (3525.0, 0.15);
// ROW 3
KNOWNTARGETING[3][0] = new Settings (3030.0, 0.15);
KNOWNTARGETING[3][1] = new Settings (3031.0, 0.15);
KNOWNTARGETING[3][2] = new Settings (3000.0, 0.15);
KNOWNTARGETING[3][3] = new Settings (3000.0, 0.15);
KNOWNTARGETING[3][4] = new Settings (3000.0, 0.03);
KNOWNTARGETING[3][5] = new Settings (3535.0, 0.1);
// ROW 4
KNOWNTARGETING[4][0] = new Settings (4540.0, 0.1);
KNOWNTARGETING[4][1] = new Settings (4541.0, 0.1);
KNOWNTARGETING[4][2] = new Settings (4542.0, 0.1);
KNOWNTARGETING[4][3] = new Settings (4543.0, 0.1);
KNOWNTARGETING[4][4] = new Settings (4544.0, 0.1);
KNOWNTARGETING[4][5] = new Settings (4545.0, 0.1);
// ROW 1
KNOWNTARGETING[5][0] = new Settings (4550.0, 0.1);
KNOWNTARGETING[5][1] = new Settings (4551.0, 0.1);
KNOWNTARGETING[5][2] = new Settings (4552.0, 0.1);
KNOWNTARGETING[5][3] = new Settings (4553.0, 0.1);
KNOWNTARGETING[5][4] = new Settings (4554.0, 0.1);
KNOWNTARGETING[5][5] = new Settings (4555.0, 0.1);
}
public Targeting()
{
}
public Settings calculateSettings(double robotX, double robotY, double robotHeading, double robotVelocity) {
Settings recommendedSettings = new Settings(0.0, 0.0);
double cos45 = Math.cos(Math.toRadians(-45));
double sin45 = Math.sin(Math.toRadians(-45));
double rotatedY = (robotX -40.0) * sin45 + (robotY +7.0) * cos45;
double rotatedX = (robotX -40.0) * cos45 - (robotY +7.0) * sin45;
// Convert robot coordinates to inches
robotInchesX = rotatedX * unitConversionFactor;
robotInchesY = rotatedY * unitConversionFactor;
// Find approximate location in the grid
robotGridX = Math.abs(Math.floorDiv((int) robotInchesX, tileSize) +1);
robotGridY = Math.abs(Math.floorDiv((int) robotInchesY, tileSize));
// Use Grid Location to perform lookup
// Keep it simple for now but may want to interpolate results
if ((robotGridY < 6) && (robotGridX <6)) {
recommendedSettings.flywheelRPM = KNOWNTARGETING[robotGridY][robotGridX].flywheelRPM;
recommendedSettings.hoodAngle = KNOWNTARGETING[robotGridY][robotGridX].hoodAngle;
}
return recommendedSettings;
}
}

View File

@@ -0,0 +1,142 @@
package org.firstinspires.ftc.teamcode.utils;
import static org.firstinspires.ftc.teamcode.constants.Color.redAlliance;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.acmerobotics.roadrunner.Pose2d;
import org.firstinspires.ftc.vision.apriltag.AprilTagDetection;
@Config
public class Turret {
public static double turretTolerance = 0.02;
public static double turrPosScalar = 1.009;
public static double turret180Range = 0.6;
public static double turrDefault = 0.4;
public static double cameraBearingEqual = 1.5;
public static double errorLearningRate = 2;
public static double turrMin = 0.2;
public static double turrMax = 0.8;
Robot robot;
MultipleTelemetry TELE;
AprilTagWebcam webcam;
private int obeliskID = 0;
private double turrPos = 0.0;
private double offset = 0.0;
private double bearing = 0.0;
public Turret(Robot rob, MultipleTelemetry tele, AprilTagWebcam cam) {
this.TELE = tele;
this.robot = rob;
this.webcam = cam;
}
public double getTurrPos() {
return turrPosScalar * (robot.turr1Pos.getVoltage() / 3.3);
}
public void manualSetTurret(double pos){
robot.turr1.setPosition(pos);
robot.turr2.setPosition(1-pos);
}
public boolean turretEqual(double pos) {
return Math.abs(pos - this.getTurrPos()) < turretTolerance;
}
public double getBearing() {
if (redAlliance) {
AprilTagDetection d24 = webcam.getTagById(24);
if (d24 != null) {
bearing = d24.ftcPose.bearing;
return bearing;
} else {
return 1000.0;
}
} else {
AprilTagDetection d20 = webcam.getTagById(20);
if (d20 != null) {
bearing = d20.ftcPose.bearing;
return bearing;
} else {
return 1000.0;
}
}
}
public int detectObelisk() {
AprilTagDetection id21 = webcam.getTagById(21);
AprilTagDetection id22 = webcam.getTagById(22);
AprilTagDetection id23 = webcam.getTagById(23);
if (id21 != null) {
obeliskID = 21;
} else if (id22 != null) {
obeliskID = 22;
} else if (id23 != null) {
obeliskID = 23;
}
return obeliskID;
}
public int getObeliskID() {
return obeliskID;
}
public void update() {
}
/*
Param @deltaPos = Pose2d when subtracting robot x, y, heading from goal x, y, heading
*/
public void trackGoal(Pose2d deltaPos) {
/* ---------------- FIELD → TURRET GEOMETRY ---------------- */
// Angle from robot to goal in robot frame
double desiredTurretAngleDeg = Math.toDegrees(
Math.atan2(deltaPos.position.y, deltaPos.position.x)
);
// Robot heading (field → robot)
double robotHeadingDeg = Math.toDegrees(deltaPos.heading.toDouble());
// Turret angle needed relative to robot
double turretAngleDeg = desiredTurretAngleDeg - robotHeadingDeg;
// Normalize to [-180, 180]
while (turretAngleDeg > 180) turretAngleDeg -= 360;
while (turretAngleDeg < -180) turretAngleDeg += 360;
/* ---------------- APRILTAG CORRECTION ---------------- */
double tagBearingDeg = getBearing(); // + = target is to the left
if (tagBearingDeg != 1000.0 && Math.abs(tagBearingDeg) < cameraBearingEqual) {
// Slowly learn turret offset (persistent calibration)
offset -= tagBearingDeg * errorLearningRate;
}
turretAngleDeg += offset;
/* ---------------- ANGLE → SERVO ---------------- */
double turretPos = turrDefault + (turretAngleDeg / (turret180Range * 2.0));
// Clamp to servo range
turretPos = Math.max(turrMin, Math.min(turretPos, turrMax));
robot.turr1.setPosition(turretPos);
robot.turr2.setPosition(1.0 - turretPos);
/* ---------------- TELEMETRY ---------------- */
TELE.addData("Turret Angle", turretAngleDeg);
TELE.addData("Bearing", tagBearingDeg);
TELE.addData("Offset", offset);
}
}