5 Commits

9 changed files with 345 additions and 146 deletions

View File

@@ -5,11 +5,11 @@ import com.acmerobotics.dashboard.config.Config;
@Config
public class ServoPositions {
public static double spindexer_intakePos1 = 0.19;
public static double spindexer_intakePos1 = 0.18;
public static double spindexer_intakePos2 = 0.35;//0.5;
public static double spindexer_intakePos2 = 0.36;//0.5;
public static double spindexer_intakePos3 = 0.51;//0.66;
public static double spindexer_intakePos3 = 0.54;//0.66;
public static double spindexer_outtakeBall3 = 0.47;

View File

@@ -814,6 +814,8 @@ public class TeleopV3 extends LinearOpMode {
TELE.addData("hood", robot.hood.getPosition());
TELE.addData("targetVel", vel);
TELE.addData("Velocity", flywheel.getVelo());
TELE.addData("Velo1", flywheel.velo1);
TELE.addData("Velo2", flywheel.velo2);
TELE.addData("shootOrder", shootOrder);
TELE.addData("oddColor", oddBallColor);

View File

@@ -1,5 +1,6 @@
package org.firstinspires.ftc.teamcode.tests;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.spindexer_intakePos1;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.transferServo_in;
import static org.firstinspires.ftc.teamcode.constants.ServoPositions.transferServo_out;
@@ -12,28 +13,40 @@ import com.qualcomm.robotcore.hardware.DcMotorEx;
import org.firstinspires.ftc.teamcode.utils.Flywheel;
import org.firstinspires.ftc.teamcode.utils.Robot;
import org.firstinspires.ftc.teamcode.utils.Spindexer;
@Config
@TeleOp
public class ShooterTest extends LinearOpMode {
public static int mode = 0;
public static int mode = 1;
public static double parameter = 0.0;
// --- CONSTANTS YOU TUNE ---
//TODO: @Daniel FIX THE BELOW CONSTANTS A LITTLE IF NEEDED
public static double Velocity = 0.0;
public static double P = 40.0;
public static double I = 0.3;
public static double D = 7.0;
public static double F = 10.0;
public static double P = 255.0;
public static double I = 0.0;
public static double D = 0.0;
public static double F = 7.5;
public static double transferPower = 1.0;
public static double hoodPos = 0.501;
public static double turretPos = 0.501;
public static boolean shoot = false;
public static boolean intake = false;
Robot robot;
Flywheel flywheel;
double shootStamp = 0.0;
boolean shootAll = false;
public double spinPow = 0.09;
public static boolean enableHoodAutoOpen = false;
public double hoodAdjust = 0.0;
public static double hoodAdjustFactor = 1.0;
Spindexer spindexer ;
@Override
public void runOpMode() throws InterruptedException {
@@ -41,6 +54,7 @@ public class ShooterTest extends LinearOpMode {
DcMotorEx leftShooter = robot.shooter1;
DcMotorEx rightShooter = robot.shooter2;
flywheel = new Flywheel(hardwareMap);
spindexer = new Spindexer(hardwareMap);
MultipleTelemetry TELE = new MultipleTelemetry(
telemetry, FtcDashboard.getInstance().getTelemetry()
@@ -61,15 +75,60 @@ public class ShooterTest extends LinearOpMode {
}
if (hoodPos != 0.501) {
if (enableHoodAutoOpen) {
robot.hood.setPosition(hoodPos+(hoodAdjustFactor*(flywheel.getVelo()/Velocity)));
} else {
robot.hood.setPosition(hoodPos);
}
}
if (intake) {
robot.intake.setPower(1);
} else {
robot.intake.setPower(0);
}
robot.transfer.setPower(transferPower);
if (shoot) {
shootStamp = getRuntime();
shootAll = true;
shoot = false;
robot.transfer.setPower(transferPower);
}
if (shootAll) {
//intake = false;
//reject = false;
// TODO: Change starting position based on desired order to shoot green ball
//spindexPos = spindexer_intakePos1;
if (getRuntime() - shootStamp < 3.5) {
robot.transferServo.setPosition(transferServo_in);
robot.spin1.setPower(-spinPow);
robot.spin2.setPower(spinPow);
} else {
robot.transferServo.setPosition(transferServo_out);
//spindexPos = spindexer_intakePos1;
shootAll = false;
robot.transferServo.setPosition(transferServo_out);
robot.transfer.setPower(0);
robot.spin1.setPower(0);
robot.spin2.setPower(0);
spindexer.resetSpindexer();
spindexer.processIntake();
}
} else {
spindexer.processIntake();
}
TELE.addData("Velocity", flywheel.getVelo());
TELE.addData("Velocity 1", flywheel.getVelo1());
TELE.addData("Velocity 2", flywheel.getVelo2());

View File

@@ -9,8 +9,8 @@ public class Flywheel {
Robot robot;
public PIDFCoefficients shooterPIDF1, shooterPIDF2;
double velo = 0.0;
double velo1 = 0.0;
double velo2 = 0.0;
public double velo1 = 0.0;
public double velo2 = 0.0;
double targetVelocity = 0.0;
double powPID = 0.0;
boolean steady = false;
@@ -38,10 +38,14 @@ public class Flywheel {
// Set the robot PIDF for the next cycle.
public void setPIDF(double p, double i, double d, double f) {
robot.shooterPIDF.p = p;
robot.shooterPIDF.i = i;
robot.shooterPIDF.d = d;
robot.shooterPIDF.f = f;
shooterPIDF1.p = p;
shooterPIDF1.i = i;
shooterPIDF1.d = d;
shooterPIDF1.f = f;
shooterPIDF2.p = p;
shooterPIDF2.i = i;
shooterPIDF2.d = d;
shooterPIDF2.f = f;
}
// Convert from RPM to Ticks per Second
@@ -54,10 +58,6 @@ public class Flywheel {
targetVelocity = commandedVelocity;
// Add code here to set PIDF based on desired RPM
//robot.shooterPIDF.p = P;
//robot.shooterPIDF.i = I;
//robot.shooterPIDF.d = D;
//robot.shooterPIDF.f = F;
robot.shooter1.setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, shooterPIDF1);
robot.shooter2.setPIDFCoefficients(DcMotor.RunMode.RUN_USING_ENCODER, shooterPIDF2);

View File

@@ -21,7 +21,7 @@ public class Robot {
//Initialize Public Components
public static boolean usingLimelight = true;
public static boolean usingCamera = true;
public static boolean usingCamera = false;
public DcMotorEx frontLeft;
public DcMotorEx frontRight;
public DcMotorEx backLeft;
@@ -29,10 +29,10 @@ public class Robot {
public DcMotorEx intake;
public DcMotorEx transfer;
public PIDFCoefficients shooterPIDF;
public double shooterPIDF_P = 10.0;
public double shooterPIDF_I = 0.6;
public double shooterPIDF_D = 5.0;
public double shooterPIDF_F = 10.0;
public double shooterPIDF_P = 255.0;
public double shooterPIDF_I = 0.0;
public double shooterPIDF_D = 0.0;
public double shooterPIDF_F = 7.5;
public double[] shooterPIDF_StepSizes = {10.0, 1.0, 0.001, 0.0001};
public DcMotorEx shooter1;
public DcMotorEx shooter2;

View File

@@ -8,7 +8,7 @@ import com.qualcomm.robotcore.hardware.HardwareMap;
public class Servos {
//PID constants
// TODO: get PIDF constants
public static double spinP = 3.3, spinI = 0, spinD = 0.1, spinF = 0.02;
public static double spinP = 2.0, spinI = 0, spinD = 0.3, spinF = 0.02;
public static double turrP = 1.1, turrI = 0.25, turrD = 0.0625, turrF = 0;
public static double spin_scalar = 1.0086;
public static double spin_restPos = 0.0;
@@ -40,7 +40,7 @@ public class Servos {
}
public boolean spinEqual(double pos) {
return Math.abs(pos - this.getSpinPos()) < 0.02;
return Math.abs(pos - this.getSpinPos()) < 0.03;
}
public double getTurrPos() {

View File

@@ -277,7 +277,6 @@ public class Spindexer {
if (servos.spinEqual(intakePositions[commandedIntakePosition])) {
currentIntakeState = Spindexer.IntakeState.UNKNOWN_DETECT;
stopSpindexer();
detectBalls(true, true);
unknownColorDetect = 0;
} else {
// Keep moving the spindexer
@@ -288,7 +287,7 @@ public class Spindexer {
if (unknownColorDetect >5) {
currentIntakeState = Spindexer.IntakeState.FINDNEXT;
} else {
detectBalls(true, true);
//detectBalls(true, true);
unknownColorDetect++;
}
break;
@@ -306,33 +305,32 @@ public class Spindexer {
// Find Next Open Position and start movement
double currentSpindexerPos = servos.getSpinPos();
double commandedtravelDistance = 2.0;
double proposedTravelDistance = Math.abs(intakePositions[0] - currentSpindexerPos);
if (ballPositions[0].isEmpty && (proposedTravelDistance < commandedtravelDistance)) {
//double proposedTravelDistance = Math.abs(intakePositions[0] - currentSpindexerPos);
//if (ballPositions[0].isEmpty && (proposedTravelDistance < commandedtravelDistance)) {
if (ballPositions[0].isEmpty) {
// Position 1
commandedIntakePosition = 0;
servos.setSpinPos(intakePositions[commandedIntakePosition]);
currentIntakeState = Spindexer.IntakeState.MOVING;
commandedtravelDistance = proposedTravelDistance;
}
proposedTravelDistance = Math.abs(intakePositions[1] - currentSpindexerPos);
if (ballPositions[1].isEmpty && (proposedTravelDistance < commandedtravelDistance)) {
//proposedTravelDistance = Math.abs(intakePositions[1] - currentSpindexerPos);
//if (ballPositions[1].isEmpty && (proposedTravelDistance < commandedtravelDistance)) {
if (ballPositions[1].isEmpty) {
// Position 2
commandedIntakePosition = 1;
servos.setSpinPos(intakePositions[commandedIntakePosition]);
currentIntakeState = Spindexer.IntakeState.MOVING;
commandedtravelDistance = proposedTravelDistance;
}
proposedTravelDistance = Math.abs(intakePositions[2] - currentSpindexerPos);
if (ballPositions[2].isEmpty && (proposedTravelDistance < commandedtravelDistance)) {
//proposedTravelDistance = Math.abs(intakePositions[2] - currentSpindexerPos);
if (ballPositions[2].isEmpty) {
// Position 3
commandedIntakePosition = 2;
servos.setSpinPos(intakePositions[commandedIntakePosition]);
currentIntakeState = Spindexer.IntakeState.MOVING;
commandedtravelDistance = proposedTravelDistance;
}
if (currentIntakeState != Spindexer.IntakeState.MOVING) {
// Full
commandedIntakePosition = bestFitMotif();
//commandedIntakePosition = bestFitMotif();
currentIntakeState = Spindexer.IntakeState.FULL;
}
moveSpindexerToPos(intakePositions[commandedIntakePosition]);
@@ -343,7 +341,7 @@ public class Spindexer {
if (servos.spinEqual(intakePositions[commandedIntakePosition])) {
currentIntakeState = Spindexer.IntakeState.INTAKE;
stopSpindexer();
detectBalls(false, false);
//detectBalls(false, false);
} else {
// Keep moving the spindexer
moveSpindexerToPos(intakePositions[commandedIntakePosition]);
@@ -374,7 +372,7 @@ public class Spindexer {
case SHOOT_ALL_READY:
// Double Check Colors
detectBalls(false, false); // Minimize hardware calls
//detectBalls(false, false); // Minimize hardware calls
if (ballPositions[0].isEmpty && ballPositions[1].isEmpty && ballPositions[2].isEmpty) {
// All ball shot move to intake state
currentIntakeState = Spindexer.IntakeState.FINDNEXT;
@@ -422,7 +420,7 @@ public class Spindexer {
if (servos.spinEqual(intakePositions[commandedIntakePosition])) {
currentIntakeState = Spindexer.IntakeState.INTAKE;
stopSpindexer();
detectBalls(true, false);
//detectBalls(true, false);
} else {
// Keep moving the spindexer
moveSpindexerToPos(intakePositions[commandedIntakePosition]);

View File

@@ -9,11 +9,13 @@ import com.qualcomm.robotcore.hardware.HardwareMap;
public class Targeting {
MultipleTelemetry TELE;
double cancelOffsetX = 7.071067811;
double cancelOffsetY = 7.071067811;
double cancelOffsetX = 0.0; // was -40.0
double cancelOffsetY = 0.0; // was 7.0
double unitConversionFactor = 0.95;
int tileSize = 24; //inches
public final int TILE_UPPER_QUARTILE = 18;
public final int TILE_LOWER_QUARTILE = 6;
public double robotInchesX, robotInchesY = 0.0;
@@ -37,33 +39,33 @@ public class Targeting {
static {
KNOWNTARGETING = new Settings[6][6];
// ROW 0 - Closet to the goals
KNOWNTARGETING[0][0] = new Settings (3000.0, 0.25);
KNOWNTARGETING[0][1] = new Settings (3001.0, 0.25);
KNOWNTARGETING[0][2] = new Settings (3002.0, 0.25);
KNOWNTARGETING[0][3] = new Settings (3302.0, 0.2);
KNOWNTARGETING[0][4] = new Settings (3503.0, 0.15);
KNOWNTARGETING[0][5] = new Settings (3505.0, 0.15);
KNOWNTARGETING[0][0] = new Settings (2300.0, 0.93);
KNOWNTARGETING[0][1] = new Settings (2300.0, 0.93);
KNOWNTARGETING[0][2] = new Settings (2500.0, 0.78);
KNOWNTARGETING[0][3] = new Settings (2800.0, 0.68);
KNOWNTARGETING[0][4] = new Settings (3000.0, 0.58);
KNOWNTARGETING[0][5] = new Settings (3000.0, 0.58);
// ROW 1
KNOWNTARGETING[1][0] = new Settings (3010.0, 0.25);
KNOWNTARGETING[1][1] = new Settings (3011.0, 0.25);
KNOWNTARGETING[1][2] = new Settings (3012.0, 0.25);
KNOWNTARGETING[1][3] = new Settings (3313.0, 0.15);
KNOWNTARGETING[1][4] = new Settings (3514.0, 0.15);
KNOWNTARGETING[1][5] = new Settings (3515.0, 0.15);
KNOWNTARGETING[1][0] = new Settings (2300.0, 0.93);
KNOWNTARGETING[1][1] = new Settings (2300.0, 0.93);
KNOWNTARGETING[1][2] = new Settings (2600.0, 0.78);
KNOWNTARGETING[1][3] = new Settings (2800.0, 0.62);
KNOWNTARGETING[1][4] = new Settings (3000.0, 0.55);
KNOWNTARGETING[1][5] = new Settings (3200.0, 0.50);
// ROW 2
KNOWNTARGETING[2][0] = new Settings (3020.0, 0.1);
KNOWNTARGETING[2][1] = new Settings (3000.0, 0.25);
KNOWNTARGETING[2][2] = new Settings (3000.0, 0.15);
KNOWNTARGETING[2][3] = new Settings (3000.0, 0.15);
KNOWNTARGETING[2][4] = new Settings (3524.0, 0.15);
KNOWNTARGETING[2][5] = new Settings (3525.0, 0.15);
KNOWNTARGETING[2][0] = new Settings (2500.0, 0.78);
KNOWNTARGETING[2][1] = new Settings (2500.0, 0.78);
KNOWNTARGETING[2][2] = new Settings (2700.0, 0.60);
KNOWNTARGETING[2][3] = new Settings (2900.0, 0.53);
KNOWNTARGETING[2][4] = new Settings (3100.0, 0.50);
KNOWNTARGETING[2][5] = new Settings (3100.0, 0.50);
// ROW 3
KNOWNTARGETING[3][0] = new Settings (3030.0, 0.15);
KNOWNTARGETING[3][1] = new Settings (3031.0, 0.15);
KNOWNTARGETING[3][2] = new Settings (3000.0, 0.15);
KNOWNTARGETING[3][3] = new Settings (3000.0, 0.15);
KNOWNTARGETING[3][4] = new Settings (3000.0, 0.03);
KNOWNTARGETING[3][5] = new Settings (3535.0, 0.1);
KNOWNTARGETING[3][0] = new Settings (2900.0, 0.50);
KNOWNTARGETING[3][1] = new Settings (2900.0, 0.50);
KNOWNTARGETING[3][2] = new Settings (2900.0, 0.50);
KNOWNTARGETING[3][3] = new Settings (3100.0, 0.47);
KNOWNTARGETING[3][4] = new Settings (3100.0, 0.47);
KNOWNTARGETING[3][5] = new Settings (3100.0, 0.47);
// ROW 4
KNOWNTARGETING[4][0] = new Settings (4540.0, 0.1);
KNOWNTARGETING[4][1] = new Settings (4541.0, 0.1);
@@ -89,8 +91,8 @@ public class Targeting {
double cos45 = Math.cos(Math.toRadians(-45));
double sin45 = Math.sin(Math.toRadians(-45));
double rotatedY = (robotX - 40.0) * sin45 + (robotY + 7.0) * cos45;
double rotatedX = (robotX - 40.0) * cos45 - (robotY + 7.0) * sin45;
double rotatedY = (robotX + cancelOffsetX) * sin45 + (robotY + cancelOffsetY) * cos45;
double rotatedX = (robotX + cancelOffsetX) * cos45 - (robotY + cancelOffsetY) * sin45;
// Convert robot coordinates to inches
robotInchesX = rotatedX * unitConversionFactor;
@@ -100,6 +102,60 @@ public class Targeting {
int gridX = Math.abs(Math.floorDiv((int) robotInchesX, tileSize) + 1);
int gridY = Math.abs(Math.floorDiv((int) robotInchesY, tileSize));
int remX = Math.floorMod((int)robotInchesX, tileSize);
int remY = Math.floorMod((int)robotInchesX, tileSize);
// Determine if we need to interpolate based on tile position.
// if near upper or lower quarter or tile interpolate with next tile.
int x1 = 0;
int y1 = 0;
// interpolate = false;
// if ((remX > TILE_UPPER_QUARTILE) && (remY > TILE_UPPER_QUARTILE) &&
// (robotGridX < 5) && (robotGridY <5)) {
// // +X, +Y
// interpolate = true;
// x1 = robotGridX + 1;
// y1 = robotGridY + 1;
// } else if ((remX < TILE_LOWER_QUARTILE) && (remY < TILE_LOWER_QUARTILE) &&
// (robotGridX > 0) && (robotGridY > 0)) {
// // -X, -Y
// interpolate = true;
// x1 = robotGridX - 1;
// y1 = robotGridY - 1;
// } else if ((remX > TILE_UPPER_QUARTILE) && (remY < TILE_LOWER_QUARTILE) &&
// (robotGridX < 5) && (robotGridY > 0)) {
// // +X, -Y
// interpolate = true;
// x1 = robotGridX + 1;
// y1 = robotGridY - 1;
// } else if ((remX < TILE_LOWER_QUARTILE) && (remY > TILE_UPPER_QUARTILE) &&
// (robotGridX > 0) && (robotGridY < 5)) {
// // -X, +Y
// interpolate = true;
// x1 = robotGridX - 1;
// y1 = robotGridY + 1;
// } else if ((remX < TILE_LOWER_QUARTILE) && (robotGridX > 0)) {
// // -X, Y
// interpolate = true;
// x1 = robotGridX - 1;
// y1 = robotGridY;
// } else if ((remY < TILE_LOWER_QUARTILE) && (robotGridY > 0)) {
// // X, -Y
// interpolate = true;
// x1 = robotGridX;
// y1 = robotGridY - 1;
// } else if ((remX > TILE_UPPER_QUARTILE) && (robotGridX < 5)) {
// // +X, Y
// interpolate = true;
// x1 = robotGridX + 1;
// y1 = robotGridY;
// } else if ((remY > TILE_UPPER_QUARTILE) && (robotGridY < 5)) {
// // X, +Y
// interpolate = true;
// x1 = robotGridX;
// y1 = robotGridY + 1;
// }
//clamp
robotGridX = Math.max(0, Math.min(gridX, KNOWNTARGETING[0].length - 1));
robotGridY = Math.max(0, Math.min(gridY, KNOWNTARGETING.length - 1));
@@ -107,17 +163,17 @@ public class Targeting {
// basic search
if(!interpolate) {
if ((robotGridY < 6) && (robotGridX <6)) {
recommendedSettings.flywheelRPM = KNOWNTARGETING[robotGridY][robotGridX].flywheelRPM;
recommendedSettings.hoodAngle = KNOWNTARGETING[robotGridY][robotGridX].hoodAngle;
recommendedSettings.flywheelRPM = KNOWNTARGETING[robotGridX][robotGridY].flywheelRPM;
recommendedSettings.hoodAngle = KNOWNTARGETING[robotGridX][robotGridY].hoodAngle;
}
return recommendedSettings;
} else {
// bilinear interpolation
int x0 = robotGridX;
int x1 = Math.min(x0 + 1, KNOWNTARGETING[0].length - 1);
int y0 = gridY;
int y1 = Math.min(y0 + 1, KNOWNTARGETING.length - 1);
//int x1 = Math.min(x0 + 1, KNOWNTARGETING[0].length - 1);
int y0 = robotGridY;
//int y1 = Math.min(y0 + 1, KNOWNTARGETING.length - 1);
double x = (robotInchesX - (x0 * tileSize)) / tileSize;
double y = (robotInchesY - (y0 * tileSize)) / tileSize;

View File

@@ -1,12 +1,13 @@
package org.firstinspires.ftc.teamcode.utils;
import static org.firstinspires.ftc.teamcode.constants.Color.redAlliance;
import static java.lang.Math.abs;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.acmerobotics.roadrunner.Pose2d;
import com.arcrobotics.ftclib.controller.PIDFController;
import com.arcrobotics.ftclib.controller.PIDController;
import com.qualcomm.hardware.limelightvision.LLResult;
import com.qualcomm.hardware.limelightvision.LLResultTypes;
import com.qualcomm.hardware.limelightvision.Limelight3A;
@@ -18,43 +19,43 @@ import java.util.List;
@Config
public class Turret {
public static double turretTolerance = 0.02;
public static double turrPosScalar = 0.00011264432;
public static double turret180Range = 0.4;
public static double turrDefault = 0.4;
public static double turrMin = 0.15;
public static double turrMax = 0.85;
public static double visionCorrectionGain = 0.08; // Single tunable gain
public static double maxOffsetChangePerCycle = 5.0; // Degrees per cycle
public static double cameraBearingEqual = 0.5; // Deadband
// TODO: tune these values for limelight
// At the top with other static variables:
public static double kP = 0.015; // Proportional gain - tune this first
public static double kI = 0.0005; // Integral gain - add slowly if needed
public static double kD = 0.002; // Derivative gain - helps prevent overshoot
public static double kF = 0.002; // Derivative gain - helps prevent overshoot
public static double maxOffset = 10; // degrees - safety limit
// Add these as instance variables:
private double lastTagBearing = 0.0;
private double offsetIntegral = 0.0;
public static double cameraBearingEqual = 1;
public static double turrMin = 0.2;
public static double turrMax = 0.8;
public static double mult = 0.0;
private boolean lockOffset = false;
public static double clampTolerance = 0.03;
Robot robot;
MultipleTelemetry TELE;
Limelight3A webcam;
private int obeliskID = 0;
private double offset = 0.0;
private PIDFController controller = new PIDFController(kP, kI, kD, kF);
double tx = 0.0;
double ty = 0.0;
double limelightPosX = 0.0;
double limelightPosY = 0.0;
public static double clampTolerance = 0.03;
private boolean lockOffset = false;
private int obeliskID = 0;
private double offset = 0.0;
private double currentTrackOffset = 0.0;
private int currentTrackCount = 0;
private double permanentOffset = 0.0;
LLResult result;
private PIDController bearingPID;
public static double B_PID_P = 0.3, B_PID_I = 0.0, B_PID_D = 0.05;
boolean bearingAligned = false;
public Turret(Robot rob, MultipleTelemetry tele, Limelight3A cam) {
this.TELE = tele;
@@ -66,6 +67,7 @@ public class Turret {
} else {
webcam.pipelineSwitch(2);
}
bearingPID = new PIDController(B_PID_P, B_PID_I, B_PID_D);
}
public void zeroTurretEncoder() {
@@ -89,12 +91,12 @@ public class Turret {
private void limelightRead() { // only for tracking purposes, not general reads
if (redAlliance) {
webcam.pipelineSwitch(3);
webcam.pipelineSwitch(4);
} else {
webcam.pipelineSwitch(2);
}
LLResult result = webcam.getLatestResult();
result = webcam.getLatestResult();
if (result != null) {
if (result.isValid()) {
tx = result.getTx();
@@ -158,9 +160,50 @@ public class Turret {
/*
Param @deltaPos = Pose2d when subtracting robot x, y, heading from goal x, y, heading
*/
private double bearingAlign (LLResult llResult) {
double bearingOffset = 0.0;
double targetTx = llResult.getTx(); // How far left or right the target is (degrees)
final double MIN_OFFSET_POWER = 0.15;
final double TARGET_POSITION_TOLERANCE = 1.0;
// LL has 54.5 degree total Horizontal FOV; very edges are not useful.
final double HORIZONTAL_FOV_RANGE = 26.0; // Total usable horizontal degrees from center +/-
final double DRIVE_POWER_REDUCTION = 2.0;
if (abs(targetTx) < TARGET_POSITION_TOLERANCE) {
bearingAligned = true;
} else {
bearingAligned = false;
}
// Only with valid data and if too far off target
if (llResult.isValid() && !bearingAligned)
{
// Adjust Robot Speed based on how far the target is located
// Only drive at half speed max
// switched to PID but original formula left for reference in comments
//drivePower = targetTx/HORIZONTAL_FOV_RANGE / DRIVE_POWER_REDUCTION;
bearingOffset = -(bearingPID.calculate(targetTx, 0.0));
// // Make sure we have enough power to actually drive the wheels
// if (abs(bearingOffset) < MIN_OFFSET_POWER) {
// if (bearingOffset > 0.0) {
// bearingOffset = MIN_OFFSET_POWER;
// } else {
// bearingOffset = -MIN_OFFSET_POWER;
// }
//
// }
}
return bearingOffset;
}
public void trackGoal(Pose2d deltaPos) {
controller.setPIDF(kP, kI, kD, kF);
/* ---------------- FIELD → TURRET GEOMETRY ---------------- */
// Angle from robot to goal in robot frame
@@ -173,55 +216,96 @@ public class Turret {
// Turret angle needed relative to robot
double turretAngleDeg = desiredTurretAngleDeg - robotHeadingDeg;
turretAngleDeg = -turretAngleDeg;
// Normalize to [-180, 180]
while (turretAngleDeg > 180) turretAngleDeg -= 360;
while (turretAngleDeg < -180) turretAngleDeg += 360;
/* ---------------- APRILTAG CORRECTION ---------------- */
/* ---------------- LIMELIGHT VISION CORRECTION ---------------- */
// Update local limelight results
//double tagBearingDeg = getBearing(); // + = target is to the left
//boolean hasValidTarget = (tagBearingDeg != 1000.0);
turretAngleDeg += permanentOffset;
limelightRead();
// Active correction if we see the target
if (result.isValid() && !lockOffset) {
currentTrackOffset += bearingAlign(result);
currentTrackCount++;
// double bearingError = Math.abs(tagBearingDeg);
//
double tagBearingDeg = getBearing(); // + = target is to the left
turretAngleDeg += offset;
/* ---------------- ANGLE → SERVO ---------------- */
double turretPos = turrDefault + (turretAngleDeg * (turret180Range * 2.0) / 360);
// Clamp to servo range
double currentEncoderPos = this.getTurrPos();
if (!turretEqual(turretPos)) {
double diff = turretPos - currentEncoderPos;
turretPos = turretPos + diff * mult;
// if (bearingError > cameraBearingEqual) {
// // Apply sqrt scaling to reduce aggressive corrections at large errors
// double filteredBearing = Math.signum(tagBearingDeg) * Math.sqrt(Math.abs(tagBearingDeg));
//
// // Calculate correction
// double offsetChange = visionCorrectionGain * filteredBearing;
//
// // Limit rate of change to prevent jumps
// offsetChange = Math.max(-maxOffsetChangePerCycle,
// Math.min(maxOffsetChangePerCycle, offsetChange));
//
// // Accumulate the correction
// offset += offsetChange;
//
// TELE.addData("Bearing Error", tagBearingDeg);
// TELE.addData("Offset Change", offsetChange);
// TELE.addData("Total Offset", offset);
// } else {
// // When centered, lock in the learned offset
// permanentOffset = offset;
// offset = 0.0;
// }
} else {
// only store perma update after 20+ successful tracks
// this did not work good in testing; only current works best so far.
// if (currentTrackCount > 20) {
// offset = currentTrackOffset;
// }
currentTrackOffset = 0.0;
currentTrackCount = 0;
}
if (currentEncoderPos < (turrMin + clampTolerance) || currentEncoderPos > (turrMax - clampTolerance)) {
// Clamp to servo range
turretPos = Math.max(turrMin, Math.min(turretPos, turrMax));
} else { // TODO: add so it only adds error when standstill
if (tagBearingDeg != 1000.0 && Math.abs(tagBearingDeg) > cameraBearingEqual && !lockOffset) {
// PID-based offset correction for faster, smoother tracking
// Proportional: respond to current error
offset = -controller.calculate(tagBearingDeg);
// Apply accumulated offset
turretAngleDeg += offset + currentTrackOffset;
/* ---------------- ANGLE → SERVO POSITION ---------------- */
}
double targetTurretPos = turrDefault + (turretAngleDeg * (turret180Range * 2.0) / 360);
// Clamp to physical servo limits
targetTurretPos = Math.max(turrMin, Math.min(targetTurretPos, turrMax));
// Interpolate towards target position
double currentPos = getTurrPos();
double turretPos = targetTurretPos;
if (targetTurretPos == turrMin) {
turretPos = turrMin;
} else if (targetTurretPos == turrMax) {
turretPos = turrMax;
}
// Set servo positions
robot.turr1.setPosition(turretPos);
robot.turr2.setPosition(1.0 - turretPos);
/* ---------------- TELEMETRY ---------------- */
TELE.addData("Turret Angle", turretAngleDeg);
TELE.addData("Bearing", tagBearingDeg);
TELE.addData("Offset", offset);
TELE.addData("Turret Angle (deg)", "%.2f", turretAngleDeg);
TELE.addData("Target Pos", "%.3f", targetTurretPos);
TELE.addData("Current Pos", "%.3f", currentPos);
TELE.addData("Commanded Pos", "%.3f", turretPos);
TELE.addData("LL Valid", result.isValid());
TELE.addData("LL getTx", result.getTx());
TELE.addData("LL Offset", offset);
//TELE.addData("Bearing Error", hasValidTarget ? String.format("%.2f", tagBearingDeg) : "NO TARGET");
TELE.addData("Learned Offset", "%.2f", offset);
}
}